Компьютеры Windows Интернет

Как работают 3 д очки. Советы пользователю. телевизоры. D-технологии домашнего применения

Вообще-то, мир объемный. Это потому, что наш правый и левый глаз смотрят на один и тот же объект с разных точек и видят его немного по-разному. Этого эффекта нет, когда мы смотрим обычное кино, потому что оба глаза видят один и тот же экран.

Чтобы добиться иллюзии объемного изображения, нужно, чтобы правый и левый глаз, глядя на экран, . Для этого существует два наиболее распространенных способа.

Существует третий способ показать 3D, там очки не требуются вовсе. Вместо них к вискам крепятся электроды, которые подают ток на левое и правое веко. Смысл затеи - заставить глаза моргать поочередно так, чтобы каждый глаз видел свой спектр. Франсуа Вожель, один из авторов этого способа, преподает и называет это «безочковым 3D».

Первый из них основан на том, что свет - это электромагнитная волна, которая может колебаться в разных направлениях, например по горизонтали и по вертикали. Тогда говорят, что свет поляризован вертикально или горизонтально. И есть специальные пленки-поляризаторы, которые одну волну пропускают, а другую – нет. Тогда перед киноэкраном ставится два проектора. Они показывают как бы один и тот же фильм, но снятый немного с разных точек. Причем один проектор светит горизонтально поляризованным светом, а другой - вертикально поляризованным.

Зрители надевают очки, состоящие из двух поляризаторов, один из которых ориентирован вертикально, а другой горизонтально. В результате глаза видят изображения, полученные от разных проекторов, то есть снятые с разных точек. Интересно, что если в таких очках склонить голову набок, то ориентация поляроидов изменится, и оба глаза увидят двойную картинку.

Второй способ несколько сложнее. В человеческом глазе для определения цвета есть всего три вида светочувствительных клеток-колбочек: одни видят красный, другие любят зеленый, третьи - синий. Смесь красного и зеленого света вызывает те же ощущения, что и желтый свет. Этим смешиванием авторы 3D-кино занимаются на экране а стремлении вызвать полный набор цветовых ощущений, доступных глазу.

Цвета, как мы понимаем, бывают разных оттенков. Зеленый бывает ближе к желтому, бывает ближе к голубому. И проекторы в 3D-кино используют одни оттенки красного, зеленого и синего для создания картинки для правого глаза, а другие оттенки - для левого.

Дальше зрители все равно вынуждены надевать очки, в которых стоят разные светофильтры. Правый светофильтр пропускает цвета, необходимые для создания «правой» картинки и не пропускает цвета для создания «левой», а левый светофильтр – наоборот.

3d – это сокращение для термина трехдименсиональный или трехмерный, то есть объемный. Обычный мир вокруг нас тоже трехмерен. Глаза, наблюдающие за происходящим вокруг, воспринимают окружающие объекты, находящиеся на различном удалении от них. Поскольку глаз у человека два, каждый из них видит предмет под своим углом. Два слегка отличающихся друг от друга изображения поступают в мозг, где сразу же подвергаются анализу. В результате сложного, но очень быстро пересчета мозг выдает объемную картинку, позволяющую, к примеру оценить, далеко или близко находится подъезжающий автомобиль, можно уже переходить дорогу или все же стоит подождать. 3d-технология использует очень похожий принцип, глаза при просмотре кинофильма постоянно получают две разные картины происходящего на экране действия. При этом нужно учитывать, что при просмотре обычного фильма перед зрителем прокручивается 24 статистистических кадра в секунду. Мозгу для обработки каждого из них необходимо какое-то время, и пока он это делает, на смену предыдущему кадру приходит уже следующий, создавая впечатление движения. В 3d-фильме по сути происходит то же самое, только количество кадров при этом удваивается. Глазам предлагается 48 изображений в секунду попеременно слева-справа, слева-справа. Картинка для левого глаза транслируется на несколько иной световой волне, чем та, что предназначена для правого. Если просто смотреть на экран, ничего кроме мутной, рябящей картины и не рассмотришь. Специальные очки снабжены линзами со встроенными поляризационными фильтрами, способными пропускать лучи света определенной длины. Каждый глаз видит только «свою» картинку, переправляет информацию к мозгу, а тот по привычному, давно отработанному алгоритму моделирует из полученных кадров объемное изображение. 3d-очки стали уже обычным атрибутом современного зрителя, но это вовсе не означает, что впредь смотреть кино можно будет только с ними. Технологии постоянно развиваются и, возможно, в ближайшем будущем найдется другой способ поляризации изображения. Трехмерное кино перейдет на новый виток развития, станет еще более объемным, интересным, захватывающим.


Видео по теме

3D-принтер – это печатающее устройство, которое послойно создает трехмерные объекты по цифровому образцу. Принцип работы 3D-принтера зависит от того, какая технология в нем реализована: FDM, SLS, SLA, LOM, SGC, PolyJet, DODJet или Binding powder by adhesives. Самой популярной является технология FDM-печати, которая используется в недорогих бытовых 3D-принтерах

3D-печать – это одна из самых революционных технологий нашего времени. С помощью 3D-принтеров можно напечатать обувь, одежду, мебель, музыкальные инструменты, средства передвижения, продукты питания, дома и даже живые человеческие органы и ткани.

Конструкция 3D-принтера

3D-принтер с технологией FDM-печати состоит из металлического корпуса (каркаса), отсека для закрепления катушки с пластиковой нитью, экструдера и рабочего стола. 3D-принтеры с одним экструдером могут печатать одноцветные объекты, принтеры с несколькими экструдерами – многоцветные. Чем больше у принтера экструдеров, тем он дороже. Под корпусом принтера скрыта электронная начинка и система подогрева и охлаждения. В некоторых моделях имеются ЖК-дисплеи для отображения текущей информации о печати и разъемы для работы с USB-носителями.

Расходные материалы для 3D-печати

Типичный 3D-принтер с технологией FDM-печати использует для работы тонкие полимерные нити диаметром 1,75 мм и 3 мм. Такие нити чаще всего изготавливаются из пластика PLA или ABS, но встречаются и комбинированные материалы с добавлением древесных волокон, нанопорошков, биоразлагаемых частиц, фосфорицирующих пигментов и прочих компонентов. Нити поставляются в катушках весом от 0,5 кг до 1,5 кг. Катушка с полимерными нитями помещается в специальный отсек 3D-принтера, а конец нити подается в сопло экструдера.

3D-моделирование объекта

Прежде, чем напечатать на 3D-принтере трехмерный объект, нужно создать его цифровую версию в программе для 3D-моделирования. Можно воспользоваться готовыми образцами, которые имеются на открытом доступе в Интернет, либо подготовить 3D-модели для печати самостоятельно. Подготовленная модель загружается в специальную программу для генерирования G-кода, которая делит объект на тонкие горизонтальные слои и формирует цепь команд, понятных принтеру. Готовый объект отправляется на печать.

Послойное формирование объекта

3D-принтер с технологией FDM-печати формирует физические объекты послойно, выдавливая на рабочую платформу тонкую струйку расплавленного материала. Принтер перемещает экструдер в точном соответствии с цифровой моделью, поэтому напечатанный физический объект полностью соответствует своему виртуальному прообразу. Чаще всего экструдер принтера, из которого выдавливается мягкий пластик, перемещается во время работы над неподвижной рабочей платформой, но встречаются устройства, у которых подвижными являются и экструдер, и рабочая платформа. Процесс печати начинается с нижнего слоя, после чего принтер наносит следующий слой поверх первого. Расплавленный пластик, попадая в рабочую зону, очень быстро охлаждается и твердеет.

Печать на 3D-принтере структур поддержки и финишная обработка объекта

Чтобы объект не деформировался во время печати, 3D-принтер печатает поддерживающие конструкции (они же структуры поддержки, конструкции поддержки). Такие структуры печатаются не всегда, а лишь в том случае, если в конструкции объекта имеются пустоты или нависающие детали. Представьте, что необходимо напечатать пластиковый гриб на тонкой ножке. Основанием ножки он опирается на рабочий стол, поддержки здесь не нужны, а вот для краев шляпки, которые словно висят в воздухе, такие поддержки будут просто необходимы. После окончания печати структуры поддержки можно легко удалить вручную или срезать острым лезвием или ножом.

Пользователи, которые только начинают свое знакомство с компьютером, нередко задаются вопросом о том, что такое и как реализовывается система 3D.

Это распространенная аббревиатура, которую в настоящее время можно встретить практически где угодно – от описаний гаджетов, и игр до процедур, предлагаемых в салонах красоты.

В данной статье рассказано, что имеется в виду под таким обозначение.

Определение

Как же расшифровывается 3D, что означает данное сокращение? D в данном контексте – это первая буква слова dimensions, которое означает «измерения».

Таким образом, аббревиатура 3D обозначает три измерения, именно этим сочетание может заменяться выражение трехмерная графика, а также объемное изображение.

Изначально данная аббревиатура стала употребляться именно относительно графики.

Такой способ изображения, по мере развития компьютерных технологий, пришел на смену привычному двухмерному построению картинки.

Особенно часто выражение «объемная графика» применяется к компьютерным играм, которые создают для пользователя, в большей или меньшей степени, эффект присутствия, позволяют реалистично обходить объекты, осматривать их с разных сторон.

Также данное выражение имеет широкое распространение, когда речь идет о фильмах и телевизорах. Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе Некоторые фильмы в некоторых кинотеатрах могут быть показаны в системе 3D, с эффектом присутствия, некоторые телевизоры оснащены такой функцией. Здесь имеет место несколько иная технология, чем в компьютерной графике – обе эти технологии будут подробно рассмотрены ниже.

Другие сферы применения

Такое определение используется не только в графике, оно также применимо и ко звуку, некоторым изделиям и т. п. Например:

По сути, такое обозначение может применяться практически ко всему, что традиционно является плоским – двухмерным, но с появлением новой технологии может выполняться, как трехмерное.

В любом словосочетании данная аббревиатура означает «объемное».

Фильмы

Раньше увидеть так называемые стереофильмы или можно , да и то не во всех. А кроме того, не со всеми фильмами это было возможно.

Сейчас же эта технология стала настолько распространена, что реализовывается даже в домашних телевизорах, и теперь у зрителя есть возможность смотреть фильмы с объемным изображением в домашних условиях.

Существует две технологии, с помощью которых можно добиться эффекта присутствия. Они имеют различные технические особенности, но дают более или менее схожий результат, то есть, объемную картинку высокого качества. Это технологии активного и пассивного построения изображения, каждая из которых имеет свои преимущества и недостатки.

Активное 3D

Эта технология «присутствия» может реализоваться в , она достаточно сложна и будет работать только с использованием специальных затворных очков.

Реализуется она путем динамичной смены различных картинок.

Когда очки надеты на зрителя, он в один момент может видеть изображение только одним глазом, затем – только вторым (используются специальные затемнители в очках).

Но за счет того, что картинки и затемнители меняются очень быстро, зритель этого мигания не замечает.

Реализация этого достаточно сложная – нужны не только очки, но и телевизор, поддерживающий такую систему построения изображения.

При этом, важно, чтобы очки точно синхронизировались с телевизором (чаще всего – по блютуз), а если этого не происходит, то качество картинки будет очень низким.

Интересной особенностью технологии является то, что мигание и затемнение линз приводит к общему субъективному затемнению картинки в очках, потому изображения в таких фильмах делается немного более ярким.

Его можно, но не слишком приятно смотреть без очков.

Пассивное 3D

Это иная технология, которая допускает использование совсем простых , которые известны всем и имеют синюю и красную линзы.

Именно таким методом реализуется объемное изображение в большинстве кинотеатров, так как такие очки дешевые, их стоимость в случае утери или порчи можно заложить в стоимость билета.

Конечно, для реализации такого эффекта в домашних условиях тоже требуется телевизор, способный работать по данной схеме.

Важно! Отдельно покупать очки, обычно, не требуется. Телевизоры с соответствующей технологией комплектуются сразу несколькими такими очками из-за их низкой стоимости.

Здесь основная нагрузка приходится не на очки, а на телевизор. Его экран , который построчно делит изображение на две части – синюю и красную.

Сняв очки, вы можете заметить, что картинка немного раздваивается, сильнее в центре, менее заметно у вертикальных границ экрана – это результат работы фильтра, о котором идет речь.

Каждый глаз при такой системе видит только ту картинку, которая предназначена ему – только четные или только нечетные строки.

При этом строки, предназначенные для другого глаза, перекрываются фильтром цветной линзы очков. Таким образом строится объемное изображение.

Сравнительная характеристика технологий

В настоящее время производители техники не пришли к однозначному мнению о том, какая из двух технологий оптимальнее и лучше отвечает потребностям потребителя, потому одинаково активно реализуются устройства обоих типов.

Хотя спрос на пассивное объемное изображение выше за счет более дешевой стоимости оборудования при не слишком сниженном качестве изображения.

В таблице ниже приведены преимущества и недостатки обеих технологий для сравнения.

Таблица 1. Сравнительные характеристики технологий активного и пассивного 3D
Активное Пассивное
Очки стоят достаточно дорого, как и телевизор с такой технологией В целом технология получается дешевле, чем при активном построении объемного изображения
Не всегда удобно смотреть телевизор в очках
Может не подходить некоторым людям, страдающим мигренью
Нужно следить за зарядом очков, так как они имеют собственный блок питания Чаще всего очков много в комплекте, они дешевые, выполняют лишь механическую функцию фильтра
Высокое качество изображения Чуть более низкое качество изображения
Полная безопасность для глаз по мнению специалистов, или нагрузка достаточно низкая
Мигание и смена картинки отнимает, пусть и минимально, время – в динамичных сценах это может быть достаточно сильно заметно Высокое качество картинки дают только телевизоры, которые стоят достаточно дорого
Даже несмотря на попытки производителей оптимизировать яркость, фильмы все равно будут немного темнее, чем в оригинале Нельзя смотреть кино на близком расстоянии – минимальное расстояние от экрана до зрителя для построения качественной картинки – 3 м.

Вне зависимости от технологии, важное значение имеет качество цветопередачи – если оно низкое, то оцени качество объемного видео все равно не получится.

Также большое значение, особенно при активном построении картинки имеет частота .

Все эти факторы существенно влияют на цену оборудования, часто настолько, что ценовая граница между устройствами с пассивной и активной технологией почти полностью стирается.

Совет. Нужно учесть, что фильм тоже должен быть обработан для воспроизведения в объемном формате. Хотя количество такого контента постепенно растет, в настоящее время его все еще немного. Особенно такого, который выполнен действительно качественно.

Графика

Объемная графика в играх имеет несколько иное значение. Здесь имеется в виду возможность передвижения в более или менее реалистичной локации.

Существенным отличием является, например, возможность осматривать здания, сооружения и предметы с разных сторон постепенно, тогда как в играх с двухмерной графикой при повороте, например, за здание, одна картинка резко сменялась другой.

Здесь речь не идет об эффекте присутствия – речь только о красивой картинке, создающей ощущения реалистичной игры. Так как это просто картинка, никаких очков здесь не требуется, так как технически такие реализуются иначе. Картинка строится на основании объемных компьютерных моделей всех объектов, которые есть в игре, а также локаций.

При этом,при «движении» игрока по локации, картинки динамично сменяют одна другую, создавая соответствующий эффект.

Важное значение здесь имеет высокая частота обновления экрана – если она будет низкая, картинка будет зависать, изображение «прыгать» и т. п.

По сравнению с традиционными двухмерными играми, трехмерные оказывают достаточно большую нагрузку на аппаратные ресурсы оборудования.

Кроме того, при игре в режиме онлайн очень важна высокая скорость интернета и высокое качество соединения.

Трехмерное изображение в играх гораздо более распространено, чем в фильмах , что связано с тем, что такая технология начала широко внедряться гораздо раньше.

По сути, именно с ее появлением и появилось само понятие трехмерной графики.

Кроме того, такая технология не только проще в технической реализации, но и дешевле, так как не требует дополнительного оборудования.

Перевод с Best 3dtvs.com и Howstuffworks.com

Окружающий нас мир мы воспринимаем в объемном виде, так почему же просмотр телепрограмм до сих пор был ограничен двумя измерениями? Предшествующие поколения 3D технологии были достаточно примитивными, а в результате не давали ярких впечатлений, но сопровождались порой такими негативными последствиями, как тошнота и быстрое утомление глаз. Сейчас крупные производители потребительской электроники делают ставку на возрождение 3D технологии и в бешеном темпе работают, чтобы представлять все новые варианты, которые смогут обеспечить увлекательное воспроизведение 3D видео в комфортной домашней обстановке.

В этом руководстве по технологиям 3D видеовоспроизведения подробно объясняется принцип действия 3D телевизора, отмечаются достоинства и недостатки различных вариантов 3D технологии. Но, конечно, вначале необходимо понять, за счет чего мы воспринимаем окружающий нас мир в 3D формате.

Почему мы видим мир в 3D

Мы воспринимаем мир в 3D по той простой причине, что у нас есть два глаза, которыми наблюдаем окружающее пространство (бинокулярное зрение). Наши глаза расположены друг от друга на расстоянии примерно в 6 -7 см. В результате, каждый глаз воспринимает несколько иной, чем другой глаз, образ. Например, если вы посмотрите на какой-либо объект только левым глазом, а затем правым, то вы увидите, почти одинаковое изображение, за исключением того, что каждый глаз имеет несколько смещенную точку зрения. Эта особенность называется параллаксом и имеет решающее значение в нашей способности воспринимать глубину пространства. Человеческий мозг устроен так, что если он одновременно получает от правого и левого глаза два несколько смещенных изображения, то, совмещая их, он способен воспринимать глубину пространства и расстояние до объекта.

Теперь, приняв это во внимание, попробуйте разместить перед глазами небольшой предмет и смотрите на него попеременно то, одним то другим глазом. Вы отметите сдвиг в позиции предмета. Если повторить этот эксперимент, удалив объект на метр или более, то отметите меньшее смещение для левого и правого глаза. Этот факт дает понимание того, как наш мозг воспринимает глубину пространства по визуальным подсказкам.

Теперь, когда мы понимаем, почему воспринимаем мир объемным, понятно, что любая экранная 3D технология должна обеспечить несколько разные изображения для каждого глаза. Читайте дальше, чтобы узнать об особенностях различных телевизионных 3D технологий сегодня и в ближайшем будущем.

Цветовые фильтры или анаглифические очки

Анаглифическую технологию впервые использовал еще в 1853 году в Германии, в Лейпциге Вильгельм Роллманн. Работает она довольно просто. Вы одеваете очки с цветными фильтрами вместо линз. Как правило, для левого глаза - красный, для правого - голубой или синий, иногда зеленый. Просматриваемый фильм состоит из двух наложенных друг на друга изображений в различных цветовых оттенках, каждый глаз воспринимает изображение, окрашенное в цвет, соответствующий цвету светофильтра в очках. Красный светофильтр отфильтровывает изображение для левого глаза, синий - для правого, и картинки обретают объем.

Однако, у этого метода есть ряд недостатков, которые объясняют, почему технология анаглифа никогда широко не использовалась в системах домашнего кинотеатра.

Достоинства:

  • Очень дешевые очки стоимостью меньше доллара. И, кроме того, любой цифровой телевизор или ЖК дисплей способен отображать искусственно тонированное 3D видео. Однако недостатки явно перевешивают эти преимущества.
Недостатки:
  • Тонированные цветные линзы очков дают очень плохую точность цветопередачи, изображение отличается заметными оттенками красного и зеленого или красного и синего.
  • Качество 3D изображения в целом довольно бедное, может иногда вызывать чувство тошноты.
Поляризационные очки

Еще одна технология, в которой линзы очков являются обычными светофильтрами - это поляризационная. Разделение кадров для левого и правого глаза происходит благодаря эффекту поляризации (ориентированным в разных направлениях колебаниям световых волн). В кинотеатрах поляризационная картинка получается с помощью двух проекторов. Варианты 3D видеовоспроизведения с поляризационными очками для городских кинотеатров сегодня используют компании IMAX 3D и RealD.

Направление поляризация света определяется как плоскость вдоль которой колеблется электрическое поле световой волны. Не вдаваясь в тонкости процесса можно сказать, что поляризация света дает возможность выборочно воспринимать с экрана свет в зависимости от типа поляризации. При этом используются специальные сфетофильтры в виде поляризационных пленок. Как показано на рисунке ниже, один фильтр пропускает лишь горизонтально ориентированные волны света, другой лишь световые волны с вертикальной поляризацией. Экраны в кинотеатрах имеют специальное покрытие, которое сохраняет при отражении поляризацию излучаемого проектором света. Изображения имеют направленные взаимно перпендикулярно поляризации световых потоков.

В итоге каждый глаз видит свое изображение и, как отмечалось выше, это приводит к восприятию виртуального 3D эффекта. В действительности, в таких коммерческих системах, как в RealD на самом деле используется более сложный тип поляризации света, называемый циркулярной или круговой поляризацией. Одно из изображений имеет правую, а другое левую круговую поляризацию. Преимущество использования циркулярно поляризованного света состоит в том, что вы можете наклонять голову из стороны в сторону без изменений в контрастности и яркости видимого изображения.

В домашней технике, а тем более на обычном плоском дисплее данный эффект получить довольно сложно, поэтому в телевизорах подобная технология стала использоваться лишь с прошлого года. А пионером в данном случае стала компания LG с теперь уже завоевавшей популярность фирменной технологией LG Cinema 3D. Примеру LG последовали Toshiba, Philips и ряд других компаний. А затем и Samsung представил свой вариант 3D телевизора на основе поляризационной технологии. Но до внедрения в серийное производство его пока так и не довел.

Достоинства:

  • Надежная технология позволяет получить высококачественную 3D картинку с богатыми цветами и очень хорошей детальностью.
  • Пассивные поляризационные очки не имеют электронной начинки, очень дешевые и легкие.
  • Нет мерцания и перекрестных искажений, как в случае использования активной 3D технологии с затворными очками.
  • Значительно снижается утомление глаз и другие негативные эффекты в сравнении с технологией активного 3D.
Недостатки:
  • При использовании в телевизионном варианте понижается вдвое вертикальное разрешение из-за чередования на телеэкране в одном кадре строк для правого и левого глаза. Правда, в настоящее время предпринимаются попытки избавиться от этого недостатка.
Очки с затворными линзами

Наиболее распространена сегодня т.н. активная 3D технология, в которой используются специальные 3D очки с затворными ЖК линзами. На экране телевизора попеременно отображаются кадры для левого и правого глаза, а в управляемых (ИК или ВЧ излучателем) очках попеременно открываются ЖК линзы для пропускания светового потока. Наиболее активными сторонниками развития такой 3D технологии выступают сегодня известные производители телевизоров Panasonic, Samsung и Sony.

В этом методе вдвое понижается эффективная частота смены изображения на ТВ экране из-за необходимости отображения, последовательно для каждого глаза, отдельных кадров. Поэтому такие телевизоры и мониторы должны иметь удвоенную частоту кадровой развертки. Все 3D телевизоры с поддержкой системы активного 3D имеют минимальную частоту кадров 100/120 Гц.

Линзы затворов таких 3D очков действуют подобно затворам фотоаппарата и, поэтому каждый глаз видит лишь предназначенное для него изображение. Первоначально для управления очками использовался инфракрасный (ИК) канал. Сейчас более совершенные очки работают с использование радиочастотной технологии Bluetooth.

В наиболее совершенных моделях 3D телевизоров применяется также повышенная до 200/240 Гц частота обновления экранной картинки, что помогает снизить заметность эффекта мерцания и сделать более равномерным и плавным перемещение объектов в динамичных сюжетах.

Достоинства:

  • Надежная и отработанная технология, поддерживается ведущими производителями ЖК и плазменных телевизоров.
Недостатки:
  • Необходимы дорогие и требующие батареек очки, что очень неудобно, когда хочется посмотреть 3D фильм в большой компании.
  • Линзы затворных очков поглощают часть светового потока, изображение может быть тусклым при пониженной яркости экрана и повышенном уровне внешнего освещения.
  • Частота обновления 100/120 Гц иногда может быть слишком низкой для динамичных спортивных и игровых сцен, что может приводить к мерцанию и смазыванию картинки.
Безочковые 3D телевизоры

Наиболее привлекательными и лишенными многих неудобств представляются сегодня автостереоскопические 3D телевизоры, которые позволяют смотреть объемное видео без всяких очков. Приятно отметить, что такие модели уже начали появляться в продаже, но, к сожалению, они пока очень дорогие и качество изображения оставляет еще желать лучшего.

В автостерескопических телевизорах используются наносимые на экран специальные прозрачные оптические элементы. За счет чего каждый глаз и получает свое изображение и, поэтому создается иллюзия глубины. Наиболее распространены сегодня два варианта автостереоскопии. Первый известен, как метод лентикулярных линз, второй – метод параллаксного барьера. На поверхность экрана нанесено либо множество миниатюрных продольных линз, либо перед ЖК панелью расположено множество щелевых отверстий. За счет таких ухищрений каждый глаз видит свое изображение, из которых мозг собирает виртуальное объемное.

Технология параллаксного барьера, была впервые разработанна Sharp. Эта технология использует в качестве визуальных барьеров управляемые жидкие кристаллы, которые под действием управляющего сигнала могут поворачиваться и тем самым менять направление проходящего через них света. Существенным преимуществом этого метода является то, что жидкокристаллический барьер может быть отключен, чтобы смотреть двумерное изображение.

Однако, после длительного просмотра зрительное утомление и даже головная боль здесь также могут ощущаться. Чтобы наблюдать 3D эффект зритель должен находиться перед экраном в определенных зонах, таких зон несколько, так что вся семья может с покойно смотреть 3D телевизор.

Полномасштабное использование автостереоскопических телевизоров предполагается в течение ближайших пяти лет.

Достоинства:

  • Не нужно одевать порой очень неудобные очки! Легкий переход между просмотром 2D и 3D материалов.
Недостатки:
  • Отсутствие очков является привлекательным фактором, тогда как необходимость выбора определенного места при просмотре несколько огорчает.
Выводы

Сегодня наблюдается повышенный интерес к инновационным технологиям в телевидении, 3D телевизоры наиболее яркий тому пример. Все известные производители плоскопанельных ЖК и плазменных телевизоров уже освоили производство 3D HDTV и вкладывают большие деньги в разработку еще более совершенных вариантов технологии и рекламу новых моделей своих 3D телевизоров.

Если вы пока не определились, какая из двух доминирующих сегодня 3D технологий предпочтительнее, пассивная с поляризационными очками или активная с затворными жидкокристаллическими, следите за последними новостями в соперничестве производителей. А со следующего года начинаются и более активные продажи безочковых автостереоскопических телевизоров.

Технология воспроизведения 3D в наши дни продолжает развиваться и многие компании все также ищут и совершенствуют инновационные решения для восприятия человеком 3D без дополнительного оборудования. Скорее всего доведенная до совершенства такая 3D технология уже ждет нас в ближайшем будущем, ну а в этой статье мы с вами рассмотрим воспроизведение 3D видео контента и его восприятие человеком не только в очках но и без них. Да, в наш век телевизоры не только поумнели, но и научились передавать трехмерное изображение, которое состоит из ширины, высоты и уже третьего измерения — глубины.

Воспроизводить трехмерное изображение на телевизоре можно с USB-флешки (тут подробно о том, ) или по средством HDMI кабеля (здесь читайте о том, ). В целях эксперимента, пробовал на телевизоре воспроизводить объемный файл 3D с SD карты (подробно ), но время от времени на экране наблюдаются так называемые артефакты.

Если интересно, то о принципе работы USB-флешки можете , а о флеш-памяти . Ну, а я с вашего позволения продолжу.

3D (Dimensional) — это термин относится к разной области информационных технологий, использующих эффект стереоскопии (стереодисплей, трехмерное телевидение, 3D очки…), а также к компьютерной индустрии (3DMark, Autodesk 3ds Max, игры…) и другим подобным направлениям. Термин определяет что-либо, имеющее три измерения (трехмерное пространство и графику, объемный звук). Также термин можно применить к устройствам (3D-принтер, 3D-сканер…), которые работают по методу и принципу трехмерного моделирования.

Из всего этого многообразия, к которому можно отнести технологию 3D, в этой статье речь пойдет о принципе формирования трехмерного изображения в телевизорах 3D и восприятии объемного изображения человеком с помощью дополнительного оборудования и без него. Как я уже говорил, на сегодняшний день существует несколько технологий создания трехмерного изображения:

  • 3D технология анаглиф (с сине-красными очками);
  • активная (затворная) технология 3D;
  • пассивная (поляризационная) технология 3D;
  • автостереоскопическая технология 3D — без очков (лентикулярная пленка и параллакс барьер);

На каждой из этих технологий объемного изображения мы остановимся и поговорим отдельно. Об активной и пассивной технологии 3D я уже и писал в статье о том, . Активная и пассивная технология объемного изображения используется всеми именитыми производителями. Например, компания Samsung отдает предпочтение затворной технологии, а LG активно продвигает поляризационную.

3D технология анаглиф.

Стереопара анаглиф (anagliphos — рельефный) уже не пользуется такой популярностью как раньше и сегодня производители ее не используют в своих моделях телевизоров. В этой технологии эффект 3D достигается с помощью кодирования двух одинаковых картинок. При участии цветовых фильтров одно и тоже изображение шифруется для каждого глаза. Как правило, для левого глаза предназначен фильтр красный, а для правого — голубой или синий. Для восприятия человеком технологии анаглиф и достижения эффекта 3D в специальные очки вместо стекла (линз) вставлены цветовые фильтры. Для каждого глаза фильтры пропускают точно такой же цвет, что был применен изображению во время его кодирования.
Таким образом, изображения (обработанные красным фильтром) предназначенные для красного канала проходят сквозь фильтр очков красного цвета и поглощаются (не видимы для глаза), а в синем фильтре очков воспроизводится. Тоже самое происходит и в синем канале. Изображения (обработанные синим фильтром) проходя через фильтр очков синего цвета поглощаются, а в красном передаются глазу. Получается что каждый глаз через фильтр очков получает противоположный цвет двух одинаковых изображений, которые немного смещены относительно друг друга. Данная технология уже ушла в прошлое и не используется производителями.

Плюс. Таким образом создается иллюзия для человеческого мозга и достигается эффект 3D в технологии анаглиф. Благодаря своей дешевизне эта технология жива и по сей день. Ведь создать изображение в формате анаглиф можно с помощью специализированных программ (StereoPhoto Maker, Blender или Adobe Photoshop) или найти уже обработанное видео в сети интернет. К тому же очки в пластиковой или картонной оправе с цветовыми фильтрами стоят не дорого, но если вы решили с экономить то их можно сделать своими руками (сервис YouTube имеет очень много видеоматериала по созданию красно-синих очков в домашних условиях).

Минус. К недостатком данной технологии 3D можно отнести то, что цветовые фильтры кроме цветов своего спектра (красный, синий) поглощают еще и рядом стоящие цвета и оттенки. Из-за этого объемное изображение выглядит несколько тусклым по сравнению с активной и пассивной технологией воспроизведения 3D.

Активная затворная технология 3D.

Активная технология 3D работает немного по-другому принципу. Затворная технология 3D по очереди передает смещенные относительно друг друга изображения на каждый глаз по-очереди. Другими словами, при воспроизведении первой картинки за ней следует вторая картинка с точно таким же изображением, которая смещена в сторону относительно первой. Точно также выводится на экран вторая пара одинаковых картинок, а за ними третья, четвертая и так далее.

Для восприятия человеком активной 3D технологии нужны специальные очки у которых линзы сделаны из жидкокристаллических материалов. Работают затворные 3D очки от источника питания, которым служит батарейка расположенная между линз. Я уже говорил, что активные 3D очки с жидкокристаллическими линзами, которые закрываются кристаллами в момент подачи на них напряжения (очки не прозрачные), а в состоянии покоя, то есть без напряжения, наоборот открытыми (очки прозрачные).

Таким образом, очки выполняют роль некого фильтра, который синхронно с кадрами телевизора на большой скорости поочередно закрывает глаза. Получается, что каждый глаз из двух смешанных относительно друг друга картинок будет видеть только одну. Мозг человека сочетает в себе переданные глазами ему картинки и воспринимает как объемное изображение. Таким образом в активной технологии разделяется ракурс и создается эффект 3D.

Если для просмотра видео в режиме 2D рекомендуют частоту смены кадров не менее 100 Гц, то для качественного просмотра 3D фильма нужна частота смены кадра не менее 400 Гц. Все ведущие производители 3D телевизоров чтобы увеличить качество изображения работают в этом направлении и в своем ассортименте имеют модели со сменой кадров 200, 400, 800, 1000 Гц…

Плюс. Данная технология дает возможность каждому глазу видеть изображение в полном разрешении видео потока. То есть если телевизор воспроизводит видео в формате Full HD, то и глаза воспринимают качество Full HD.

Минус. Недостаток данной технологии в том, что затворный тип воспроизведения 3D немного затемняет изображение и может привести к усталости глаз при длительном просмотре.

Пассивная поляризационная технология 3D.

Пассивная технология 3D работает уже по-другому принципу и не содержит в очках никаких источников питания. В поляризационной технологии принцип формирования объемного изображения достигается с помощью линейных или круговых волн света.

Пассивная линейная технология применяется в кинотеатрах IMAX. В линейной поляризации объемное изображение формируется с помощью двух картинок одновременно выведенных на экран, но каждая из них имеет свою поляризацию. Транслируемые картинки пропускаются под разными углами через световые фильтры, и не накладываясь друг на друга параллельно передаются в очки зрителя.

В свою очередь очки, так же как и проекторы, имеют свои световые фильтры, которые фильтруют световой поток для каждого глаза. То есть правый глаз получает картинку пропущенную через один фильтр, а левый глаз получает картинку пропущенную через другой фильтр. Таким образом в кинотеатре с помощью двух проекторов и очков со специальными фильтрами создается объемное 3D изображение.

Линейная технология имеет ряд недостатков. Например, при отклонении головы зрителя относительно экрана, изображение начинает мутнеть и разрушаться. В кинотеатре это компенсируется с помощью большого экрана, а для телевизоров была разработана круговая поляризационная технология 3D.

Пассивная круговая технология 3D работает по принципу круговой поляризации света. Другими словами, во время прохождения светового потока сквозь фильтры он начинает двигаться в разном вращательном направлении для каждого глаза. Очки с разными круговыми поляризующими фильтрами отсекают не предназначенное для глаза круговое вращательное направление и пропускают поляризацию идентичную фильтру.

То есть поток света с левой вращательной поляризацией блокируется световыми фильтрами очков с правой круговой поляризацией, а потом поток с правой вращательной поляризацией блокируется левым фильтром круговой поляризации. Таким образом каждый глаз получает предназначенное для него изображение. По такому принципу работают многие кинотеатры 3D, где проекторы дают световой поток, который отражается от экрана.

А вот телевизор 3D работает несколько иначе потому, что в нем источником светового потока служит сам экран. Для достижения воспроизведения 3D по принципу круговой поляризации света на телевизор производители нанесли специальную пленку, которая служит фильтрующей линзой и обеспечивает круговое (вращательное) поляризационное изображение.

Следует сказать, что у круговой пассивной 3D технологии изображение формируется методом чересстрочной развертки, что уменьшает в двое количество строк, а также разрешение телевизора.

Плюс. Очень дешевые поляризационные очки, которые не вызывают усталости глаз и болей в голове при просмотре 3D. В пассивной технологии потеря яркости (50%) при просмотре объемного изображения несколько ниже чем у активной (70%) технологии.

Минус. Пассивная технология 3D использует чересстрочный метод развертки, что приводит к ухудшению качества картинки. Из-за нанесенной пленки на экран телевизора при просмотре 2D уменьшается яркость изображения. Пассивные очки снижают качество изображения. Например, если транслируется видео файл с разрешением 1080p (Full HD), то в силу технологии на каждый глаз «распределяется» по 540p. Активная технология отображает полное разрешение.

Технология воспроизведения 3D без очков.

Как работают 3D очки в разных технологиях воспроизведения объемного изображения мы разобрались. Теперь давайте рассмотрим как работает 3D без очков и всяких дополнительных аксессуаров. Следует сказать, что существует несколько методов воспроизведения и восприятия объемного изображения человеком без очков.

Технология 3D с лентикулярной пленкой. Чтобы человек мог смотреть и воспринимать объемное изображение без дополнительных устройств, производители покрывают экран телевизора лентикулярной пленкой. Она состоит из множества линз, которые имеют форму призмы. Таким образом лентикулярные растровые линзы под разными ракурсами фокусируют лучи и создают для зрителя иллюзию объема (стереоскопический эффект).

У такой технологии наблюдать объемное изображение можно только на определенном расстоянии от телевизора и с ограниченным углом обзора. Иначе вместо 3D изображения вы получите искаженную трансляцию видео. Так как в данной технологии картинка для каждого глаза транслируется отдельно, то снижается разрешения объемного изображения.

Чтобы увеличить угол обзора производители техническим решением разложили трехмерную картинку на девять изображений транслирующихся в различные области. Таким образом удалось увеличить угол обзора до девяти точек вместо одной для просмотра 3D контента.

Технология 3D с параллаксным барьером. В этой технологии эффект 3D и восприятия человеком объемного изображения достигается за счет установленного перед экраном барьера (перегородка) в котором имеются так называемые щели. Таким образом через эти щели зритель находящийся перед экраном видит одним глазом определенный набор пикселей, а вторым глазом другой набор пикселей.

Вместе с этим изображение на экране шифруется (кодируется) таким образом, что левый ракурс изображения отображается в пикселях только для левого глаза, а правый ракурс для правого глаза. Таким образом в технологии 3D, где нет очков и других аксессуаров создается иллюзия объемного изображения.

Плюс. Не требуются дополнительные устройства для просмотра объемного изображения.

Минус. Ограничение зрителя в положении перед экраном и точек восприятия объемного изображения. Все эти без очковые технологии воспроизведения 3D еще «сырые» и требуют значительных доработок.

В последнее время поговаривают о создании голографических экранов и дисплеев, которым ненужны будут какие-нибудь дополнительные устройства для создания эффекта 3D. Ну что же правда это или ложь покажет время, а пока по ряду причин доминируют активная и пассивная технология воспроизведения 3D. Если вы стоите , то не лишним для вас будет ознакомиться с рекомендательной статьёй по выбору этого цифрового устройства.