Компьютеры Windows Интернет

Интегрированное ядро. Как выбрать центральный процессор, и зачем это нужно? Вариант для офисных задач и домашнего использования

Пожалуй, ключевым достоинством персонального компьютера как платформы является его впечатляющая гибкость и возможности кастомизации, которые сегодня, благодаря появлению новых стандартов и типов комплектующих, кажутся практически безграничными. Если лет десять назад, произнося аббревиатуру "ПК", можно было с уверенностью представить себе белый железный ящик, опутанный проводами и жужжащий где-то под столом, то сегодня столь однозначных ассоциаций нет и быть не может.

Сегодняшний ПК может быть мощной рабочей станцией, ориентированной на производительность в вычислениях или рабочей машиной дизайнера, "заточенной" под качество двухмерной графики и быструю работу с данными. Может быть топовой игровой машиной или скромной мультимедийной системой, живущей под телевизором...

Иначе говоря, у каждого ПК сегодня свои задачи, которым соответствует тот или иной набор железа. Но как выбрать подходящее?

Начинать следует с центрального процессора. Видеокарта определит производительность системы в играх (и ряде рабочих приложений, использующих вычисления на GPU). Материнская плата - формат системы, её функционал "из коробки" и возможности подключения комплектующих и периферийных устройств. Однако именно процессор определит возможности системы в повседневных домашних задачах и работе.

Давайте рассмотрим, что важно при выборе процессора, а что - нет.

На что НИКОГДА не нужно обращать внимание

Производитель процессора

Как и в случае с видеокартами (да, впрочем, и со многими другими девайсами), наши соотечественники всегда рады превратить обыкновенный потребительский товар в нечто, что можно поднять на штандарты и пойти войной на сторонников противоположного лагеря. Можете представить себе ситуацию, в которой любители маринованных огурцов и консервированных помидоров разделили магазин баррикадой, покрывают друг друга последними словами и частенько прибегают к рукоприкладству? Согласитесь, звучит как полный бред... однако в сфере компьютерных комплектующих такое происходит сплошь и рядом!

Если же вы выбираете процессор под абсолютно новую систему, обращать внимание следует на актуальные сокеты:

AM1 - платформа AMD, предназначенная для неттопов, встраиваемых систем и мультимедийных ПК начального уровня. Как и все APU, отличается наличием сравнительно мощной встроенной графики, что и является основным преимуществом.

AM4 - универсальная платформа AMD для мейнстрим-сегмента. Объединяет десктопные APU и мощные ЦПУ семейства Ryzen, благодаря чему позволяет собирать ПК буквально под любой бюджет и потребности пользователя.

TR4 - флагманская платформа AMD, предназначенная под процессоры Threadripper. Это продукт для профессионалов и энтузиастов: 16 физических ядер, 32 потока вычислений, четырёхканальный контроллер памяти и прочие впечатляющие цифры, дающие серьёзный прирост производительности в рабочих задачах, но практически не востребованные в домашнем сегменте.

LGA 1151_v2 - сокет, который ни в коем случае нельзя путать с обычным LGA 1151 (!!!). Являет собой актуальную генерацию мейнстримовой платформы Intel, и наконец-то привносит в потребительский сегмент процессоры с шестью физическими ядрами - этим и ценен. Однако обязательно следует помнить, что процессоры Coffee Lake нельзя установить в платы с чипсетами серий 200 и 100, а старые процессоры Skylake и Kaby Lake - в платы с чипсетами серии 300.

LGA 2066 - актуальная генерация платформы Intel, предназначенной для профессионалов. Также может быть интересна в качестве платформы для постепенного апгрейда. Младшие процессоры Core i3 и Core i5 практически ничем не отличаются от аналогов под LGA 1151 первой версии и стоят относительно доступно, но впоследствии их можно заменить на Core i7 и Core i9.

Количество ядер

Этот параметр требует множества оговорок, и его следует применять с осторожностью, однако именно он позволяет более-менее логично выстроить и дифференцировать центральные процессоры.

Модели с двумя вычислительными ядрами , а также с двумя физическими ядрами и четырьмя виртуальными потоками вне зависимости от тактовой частоты, степени динамического разгона, архитектурных преимуществ и фанатских мантр сегодня прочно обосновались в сегменте офисных ПК, причём даже там - не на самых ответственных местах. Всерьёз говорить об использовании таких ЦПУ в игровых машинах, а уж тем более - в рабочих станциях сегодня не приходится.

Процессоры с четырьмя вычислительными ядрами выглядят немного актуальнее, и могут удовлетворить запросы как офисных работников, так и не самых требовательных домашних пользователей. На них вполне можно собрать бюджетный игровой ПК, хотя в современных тайтлах производительность будет ограничена, а одновременное выполнение нескольких операций - к примеру, запись игрового видео, - будет невозможно или приведёт к заметному падению фпс.

Оптимальный вариант для дома - процессоры с шестью ядрами . Они способны обеспечивать высокую производительность в играх, не падают в обморок при выполнении нескольких ресурсоёмких задач одновременно, позволяют использовать ПК в качестве домашней рабочей станции, и при всём этом - сохраняют вполне доступную стоимость.

Процессоры с восемью ядрами - выбор тех, кто занят более серьёзными задачами, нежели игры. Хотя и с развлечениями они справятся без проблем, заметнее всего их преимущества - в рабочих приложениях. Если вы занимаетесь обработкой и монтажом видео, рисуете сложные макеты для полиграфии, проектируете дома или другие сложные конструкции, то выбирать стоит именно эти ЦПУ. Излишка производительности вы не заметите, а вот быстрая обработка и отсутствие зависаний в самый ответственный момент - определённо вас порадуют.

Процессоры с 10 и 16 ядрами - это уже серверный сегмент и весьма специфические рабочие станции, от предыдущего варианта отличающиеся примерно как работа дизайнера спецэффектов для большого кино от работы монтажера роликов на youtube (собственно, примерно там и используются). Однозначно рекомендовать или наоборот, отговаривать от их покупки сложно. Если вам реально требуется такая производительность - вы уже знаете, как и где будете её применять.

Рекомендация №8: Количество ядер - не самый чёткий параметр, и не всегда он позволяет отнести к одной группе процессоры с близкими характеристиками. Тем не менее, при выборе процессора стоит ориентироваться на этот параметр.

Производительность

Итоговый и самый важный параметр, которого, увы, нельзя найти ни в одном каталоге магазина. Тем не менее, в итоге именно он определяет, подойдет ли вам тот или иной процессор, и насколько эксплуатация ПК на его основе будет соответствовать вашим первоначальным ожиданиям.

Прежде, чем отправляться в магазин за процессором, который вам вроде бы подходит, не поленитесь изучить его детальные тесты. Причем "детальные" - это не видосики на ютубе, показывающие вам то, что вы должны увидеть по замыслу их автора. Детальные тесты - это масштабное сравнение процессора в синтетических бенчмарках, профессиональном софте и играх, проводимое по чёткой методике с участием всех или большинства конкурирующих решений.

Как и в случае с видеокартами, чтение и анализ подобных материалов поможет вам определить, стоит ли тот или иной процессор своих денег, и на что, при возможности, его можно заменить.

Рекомендация №9: Потратив пару вечеров на чтение и сравнение информации из разных источников (важно, чтобы они были авторитетными, и весьма желательно - зарубежными), вы сделаете аргументированный выбор и избавите себя от множества проблем в будущем. Поверьте, оно того более чем стоит.

Критерии и варианты выбора:

Согласно изложенным выше критериям, ЦПУ из каталога DNS можно распределить следующим образом:

Процессоры AMD Sempron и Athlon под сокет AM1 подойдут для сборки бюджетных мультимедийных ПК, встраиваемых систем и тому подобных задач. К примеру, если вы хотите установить в машину полноценный ПК с десктопной операционной системой или собрать небольшой неттоп, который будет скрытно жить в недрах дачного дома или гаража - стоит обратить внимание на эту платформу.

Для офисных ПК подойдут двухъядерные процессоры Intel Celeron , Pentium и Core i3 . Их преимуществом в данном случае выступит наличие встроенного графического ядра. Производительность последнего достаточна для вывода необходимой информации и ускорения работы браузеров, но совершенно недостаточна для игр, которых на рабочем месте всё равно быть не должно.

Для домашнего мультимедийного ПК лучшим выбором окажутся APU от AMD, предназначенные под актуальный сокет AM4. Представители линеек A8, A10 и А12 объединяют под одной крышкой четырёхъядерный процессор и весьма неплохую графику, которая может уверенно соперничать с бюджетными видеокартами. ПК на этой платформе можно сделать весьма компактным, но его производительности хватит для воспроизведения любого контента, а также целого ряда рабочих задач и немалого перечня игр.

Для бюджетного игрового ПК подойдут четырёхъядерные процессоры AMD Ryzen 3 и четырёхъядерные Core i3 под сокет LGA 1151_v2 (не путать с двухъядерными Core i3 под сокет LGA 1151 !!!). Производительности этих процессоров достаточно для любых домашних задач и большинства игр, однако грузить их серьёзной работой или пытаться выполнять несколько ресурсоёмких задач одновременно всё же не стоит.

Для бюджетной рабочей станции компромиссным вариантом могут стать четырёхъядерные процессоры AMD Ryzen 5 . Помимо физических ядер, они предлагают и виртуальные потоки вычислений, что в итоге позволяет выполнять операции в восемь потоков. Разумеется, это не так эффективно, как физические ядра, но вероятность увидеть 100% загрузку процессора и падение фпс ниже играбельного при записи или прямой трансляции геймплея здесь гораздо ниже, чем у предыдущих двух вариантов. Да и последующий монтаж оного видео пройдёт быстрее.

Оптимальный выбор для домашнего игрового ПК - шестиядерные процессоры AMD Ryzen 5 и Intel Core i5 под сокет LGA 1151_v2 (не путать с их четырёхъядерными предшественниками!!!). Стоимость этих ЦПУ вполне гуманна, их даже можно назвать относительно доступными, в отличие от топовых линеек Ryzen 7 и Core i7. А вот производительности - вполне хватает, чтобы играть в любые интересные пользователю игры и работать на дому. Причем даже одновременно, если будет такое желание.

Для топовых игровых ПК или рабочих станций без претензий на избранность и элитарность подойдут процессоры AMD Ryzen 7 и Intel Core i7 , имеющие, соответственно, 8 ядер/16 потоков и 6 ядер/12 потоков. Относясь к мейнстримовым платформам, эти процессоры всё ещё относительно доступны и не требуют дорогостоящих материнских плат, блоков питания и кулеров. Однако их производительности достаточно практически для всех задач, которые может поставить перед ПК рядовой пользователь.

Если же её всё-таки будет недостаточно - для высокопроизводительных рабочих станций предназначены процессоры AMD Ryzen Threadripper , предназначенные для установки в сокет TR4, и топовые модели процессоров Intel под сокет LGA 2066 - Core i7 и Core i9 , имеющие по 8, 10, 12 и более физических ядер. Помимо этого, процессоры предлагают четырёхканальный контроллер памяти, что важно для ряда профессиональных задач, и до 44 линий PCI-express, позволяющих подключать много периферии, не теряя в скорости обмена данными. Рекомендовать эти ЦПУ для домашнего использования не получается и в силу их цены, и благодаря "заточенности" под многопоток и профессиональные задачи. А вот в работе процессоры под топовые платформы могут буквально в разы опережать своих десктопных собратьев.

ВведениеВ развитии всей компьютерной техники в последние годы хорошо прослеживается курс на интеграцию и сопутствующую ей миниатюризацию. И речь тут идёт не столько про привычные настольные персоналки, сколько про огромный парк устройств «пользовательского уровня» – смартфонов, ноутбуков, плееров, планшетов и т.п. – которые перерождаются в новых форм-факторах, вбирая в себя всё новые и новые функции. Что же до десктопов, то их как раз это течение затрагивает в последнюю очередь. Конечно, в последние годы вектор пользовательского интереса слегка отклонился в сторону небольших по размеру вычислительных устройств, но назвать это глобальной тенденцией тяжело. Базовая архитектура x86-систем, предполагающая наличие отдельных процессора, памяти, видеокарты, материнской платы и дисковой подсистемы остаётся неизменной, и именно это ограничивает возможности по миниатюризации. Можно уменьшить каждый из перечисленных компонентов, но качественного изменения в габаритах получившейся системы в сумме не получится.

Впрочем, в течение последнего года, вроде как, наметился некоторый перелом и в среде «персоналок». По мере внедрения современных полупроводниковых технологических процессов с более «тонкими» нормами разработчикам x86-процессоров удаётся постепенно переносить в CPU функции некоторых, бывших ранее отдельными компонентами, устройств. Так, никого уже не удивляет, что контроллер памяти и, в некоторых случаях, контроллер шины PCI Express, давно стал принадлежностью центрального процессора, а чипсет материнской платы выродился в единственную микросхему – южный мост. Но в 2011 году случилось гораздо более значимое событие – в процессоры для производительных десктопов начал встраиваться графический контроллер. И речь идёт не о каких-то там хиленьких видеоядрах, способных лишь на обеспечение работы интерфейса операционной системы, а о вполне полноценных решениях, которые по своей производительности могут быть противопоставлены дискретным графическим ускорителям начального уровня и наверняка превосходят все те интегрированные видеоядра, которые встраивались в наборы системной логики ранее.

Первопроходцем выступила компания Intel, в самом начале года выпустившая для настольных компьютеров процессоры Sandy Bridge со встроенным графическим ядром семейства Intel HD Graphics. Правда, она посчитала, что хорошая встроенная графика будет интересна в первую очередь пользователям мобильных компьютеров, а для десктопных CPU была предложена лишь урезанная версия видеоядра. Неправильность такого подхода смогла позднее продемонстрировать AMD, выпустившая на рынок десктопных систем процессоры Fusion с полноценными графическими ядрами серии Radeon HD. Такие предложения сразу завоевали популярность не только в качестве решений для офиса, но и как основа для недорогих домашних компьютеров, что заставило Intel пересмотреть своё отношение к перспективам CPU с интегрированной графикой. Компания обновила линейку десктопных процессоров Sandy Bridge, добавив в число доступных предложений для настольных компьютеров модели с более быстрой версией Intel HD Graphics. В результате, теперь пользователи, желающие собрать компактную интегрированную систему, ставятся перед вопросом: платформу какого из производителей рациональнее предпочесть? Проведя всестороннее тестирование, мы постараемся дать рекомендации по выбору того или иного процессора со встроенным графическим ускорителем.

Вопрос терминологии: CPU или APU?

Если вы уже знакомы с теми процессорами с интегрированной графикой, которые предлагают для пользователей настольных компьютеров компании AMD и Intel, то знаете, что эти производители пытаются максимально дистанцировать свои продукты друг от друга, пытаясь внушить мысль о некорректности их прямого сравнения. Основную «смуту» вносит именно AMD, которая относит свои решения к новому классу APU, а не к обычным CPU. В чём же разница?

Аббревиатура APU расшифровывается как Accelerated Processing Unit (ускоренное процессорное устройство). Если обратиться к подробным разъяснениям, то оказывается, что с аппаратной точки зрения это – гибридное устройство, объединяющее на одном полупроводниковом кристалле традиционные вычислительные ядра общего назначения с графическим ядром. Иными словами, тот же CPU с интегрированной графикой. Однако разница всё-таки есть, и кроется она на программном уровне. Графическое ядро, входящее в APU, должно иметь универсальную архитектуру в виде массива потоковых процессоров, способных работать не только над синтезом трёхмерного изображения, но и над решением вычислительных задач.

То есть, APU предлагает более гибкую схему, чем простое объединение графических и вычислительных ресурсов внутри одного полупроводникового кристалла. Идея кроется в создании симбиоза этих разнородных частей, когда часть вычислений может выполняться средствами графического ядра. Правда, как и всегда в подобных случаях, для задействования этой многообещающей возможности необходима поддержка со стороны программного обеспечения.

Процессоры AMD Fusion с видеоядром, известные под кодовым именем Llano, полностью соответствуют этому определению, они – именно APU. В них встраиваются графические ядра семейства Radeon HD, которые, помимо всего прочего, поддерживают технологию ATI Stream и программный интерфейс OpenCL 1.1, посредством которых расчёты на графическом ядре действительно возможны. В теории, практическую пользу от исполнения на массиве потоковых процессоров Radeon HD способен получить целый ряд приложений, включая криптографические алгоритмы, рендеринг трёхмерных изображений или задачи пост-обработки фотографий, звука и видео. На практике, впрочем, всё гораздо сложнее. Трудности с реализацией и сомнительный реальный выигрыш в производительности пока что сдерживают широкую поддержку концепции. Поэтому в большинстве случаев APU может рассматриваться как не более чем простой CPU со встроенным графическим ядром.

Компания Intel, напротив, придерживается более консервативной терминологии. Она продолжает называть свои процессоры Sandy Bridge, содержащие интегрированное графическое ядро HD Graphics, традиционным термином CPU. Что, впрочем, имеет под собой некоторую почву, ведь программный интерфейс OpenCL 1.1 интеловской графикой не поддерживается (совместимость с ним будет обеспечена в продуктах следующего поколения Ivy Bridge). Так что никакая совместная работа разнородных частей процессора над одними и теми же вычислительными задачами у Intel пока не предусматривается.

За одним важным исключением. Дело в том, что в графических ядрах процессоров Intel заложен специализированный блок Quick Sync, ориентированный на аппаратное ускорение работы алгоритмов кодирования видеопотока. Конечно, как и в случае с OpenCL, для него требуется специальная программная поддержка, но зато он действительно способен улучшить быстродействие при перекодировании видео высокого разрешения чуть ли не на порядок. Так что в итоге можно сказать, что Sandy Bridge – это в какой-то мере тоже гибридный процессор.

Правомерно ли сравнивать APU компании AMD и CPU компании Intel? С теоретических позиций между APU и CPU со встроенным видеоускорителем нельзя поставить знак тождественного равенства, но в реальной жизни мы имеем два названия одного и того же. Процессоры AMD Llano могут ускорять параллельные вычисления, а Intel Sandy Bridge способны задействовать мощности графики лишь при перекодировании видео, но на деле и те, и другие возможности почти не используются. Так что с практической точки зрения любой из процессоров, о котором идёт речь в этой статье, представляет собой обычный CPU и видеокарту, собранные внутри одной микросхемы.

Процессоры - участники тестирования

На самом деле не стоит думать про процессоры со встроенной графикой, как о каком-то особенном предложении, нацеленном на определённую группу пользователей с нетипичными запросами. Всеобщая интеграция – глобальное течение, и такие процессоры стали стандартным предложением в нижнем и среднем ценовом диапазоне. Как AMD Fusion, так и Intel Sandy Bridge вытеснили из числа актуальных предложений CPU без графики, так что даже если вы не собираетесь делать ставку на встроенное видеоядро, ничего другого, кроме как ориентироваться на те же самые процессоры с графикой, мы предложить не можем. Благо, встроенное видеядро никто использовать не заставляет, и его можно отключить.

Таким образом, взявшись за сравнение CPU с интегрированным GPU, мы пришли к более общей задаче – сравнительному тестированию современных процессоров со стоимостью от 60 до 140 долларов. Давайте посмотрим, какие подходящие варианты в этом ценовом диапазоне нам могут предложить компании AMD и Intel, и какие конкретно модели процессоров нам удалось вовлечь в испытания.

AMD Fusion: A8, A6 и A4

Для использования десктопных процессоров с интегрированным графическим ядром компания AMD предлагает специализированную платформу Socket FM1, совместимую исключительно с процессорами семейства Llano – A8, A6 и A4. Эти процессоры имеют два, три или четыре ядра общего назначения Husky с микроархитектурой, аналогичной Athlon II, и графическое ядро Sumo, наследующее микроархитектуру младших представителей пятитысячной серии Radeon HD.



Линейка процессоров семейства Llano выглядит вполне самодостаточной, она включает разнородные по производительности вычислительной и графической части процессоры. Однако в модельном ряду имеет место одна закономерность – вычислительная производительность соотносится с производительностью графической, то есть, процессоры с наибольшим числом ядер и с максимальной тактовой частотой всегда снабжаются самыми скоростными видеоядрами.

Intel Core i3 и Pentium

Процессорам AMD Fusion компания Intel может противопоставить свои двухъядерные Core i3 и Pentium, которые не имеют собственного собирательного имени, но тоже оснащаются графическими ядрами и имеют сравнимую стоимость. Конечно, графические ядра есть и в более дорогих четырёхъядерных процессорах, но там они играют явно второстепенную роль, поэтому в настоящее тестирование Core i5 и Core i7 не попали.

Intel не стал создавать для недорогих интегрированных платформ собственную инфраструктуру, поэтому процессоры Core i3 и Pentium могут использоваться в тех же самых LGA1155-материнских платах, что и остальные Sandy Bridge. Для задействования же встроенного видеоядра потребуются материнки, основанные на специальных наборах логики H67, H61 или Z68.



Все процессоры Intel, которые можно рассматривать в качестве конкурентов для Llano, основываются на двухъядерном дизайне. При этом Intel не делает особенного упора на графическую производительность – в большинство CPU встроена слабая версия графики HD Graphics 2000 с шестью исполнительными устройствами. Исключение сделано лишь для Core i3-2125 – это процессор оснащён самым мощным в арсенале компании графическим ядром HD Graphics 3000 с двенадцатью исполнительными устройствами.

Как мы тестировали

После того, как мы познакомились с тем набором процессоров, который представлен в настоящем тестировании, самое время уделить внимание тестовым платформам. Ниже приводится список компонентов, из которых был сформирован состав тестовых систем.

Процессоры:

AMD A8-3850 (Llano, 4 ядра, 2.9 ГГц, 4 Мбайта L2, Radeon HD 6550D);
AMD A8-3800 (Llano, 4 ядра, 2.4/2.7 ГГц, 4 Мбайта L2, Radeon HD 6550D);
AMD A6-3650 (Llano, 4 ядра, 2.6 ГГц, 4 Мбайта L2, Radeon HD 6530D);
AMD A6-3500 (Llano, 3 ядра, 2.1/2.4 ГГц, 3 Мбайта L2, Radeon HD 6530D);
AMD A4-3400 (Llano, 2 ядра, 2.7 ГГц, 1 Мбайт L2, Radeon HD 6410D);
AMD A4-3300 (Llano, 2 ядра, 2.5 ГГц, 1 Мбайт L2, Radeon HD 6410D);
Intel Core i3-2130 (Sandy Bridge, 2 ядра + HT, 3.4 ГГц, 3 Мбайта L3, HD Graphics 2000);
Intel Core i3-2125 (Sandy Bridge, 2 ядра + HT, 3.3 ГГц, 3 Мбайта L3, HD Graphics 3000);
Intel Core i3-2120 (Sandy Bridge, 2 ядра + HT, 3.3 ГГц, 3 Мбайта L3, HD Graphics 2000);
Intel Pentium G860 (Sandy Bridge, 2 ядра, 3.0 ГГц, 3 Мбайта L3, HD Graphics);
Intel Pentium G840 (Sandy Bridge, 2 ядра, 2.8 ГГц, 3 Мбайта L3, HD Graphics);
Intel Pentium G620 (Sandy Bridge, 2 ядра, 2.6 ГГц, 3 Мбайта L3, HD Graphics).

Материнские платы:

ASUS P8Z68-V Pro (LGA1155, Intel Z68 Express);
Gigabyte GA-A75-UD4H (Socket FM1, AMD A75).

Память - 2 x 2 GB DDR3-1600 SDRAM 9-9-9-27-1T (Kingston KHX1600C8D3K2/4GX).
Жёсткий диск: Kingston SNVP325-S2/128GB.
Блок питания: Tagan TG880-U33II (880 Вт).
Операционная система: Microsoft Windows 7 SP1 Ultimate x64.
Драйверы:

AMD Catalyst Display Driver 11.9;
AMD Chipset Driver 8.863;
Intel Chipset Driver 9.2.0.1030;
Intel Graphics Media Accelerator Driver 15.22.50.64.2509;
Intel Management Engine Driver 7.1.10.1065;
Intel Rapid Storage Technology 10.5.0.1027.

Поскольку главной целью данного тестирования состояло изучение возможностей процессоров со встроенной графикой, все испытания проходили без использования внешней графической карты. За вывод же изображение на экран, 3D-функции и ускорение воспроизведения HD-видео отвечали встроенные видеоядра.

При этом необходимо заметить, что, ввиду отсутствия в графических ядрах Intel поддержки DirectX 11, тестирование во всех графических приложениях проводилось в режимах DirectX 9/DirectX 10.

Производительность в обычных задачах

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тест Bapco SYSmark 2012, моделирующий работу пользователя в распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера.



Как видим, в традиционных применениях процессоры серии AMD Fusion выглядят просто-таки позорно. Самый быстрый четырёхъядерный Socket FM1-процессор компании AMD, A8-3850, с большим трудом обгоняет двухъядерный Pentium G620 с вдвое меньшей стоимостью. Все же остальные представители серий AMD A8, A6 и A4 от интеловских конкурентов отстают безнадёжно. Это, в общем-то, вполне закономерный результат использования в основе процессоров Llano старой микроархитектуры, перекочевавшей туда из Phenom II и Athlon II. Пока AMD не внедрит процессорные ядра с более высокой удельной производительностью, даже четырёхъядерным APU этой компании будет очень тяжело бороться с актуальными и регулярно обновляемыми интеловскими решениями.

Более глубокое понимание результатов SYSmark 2012 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: ABBYY FineReader Pro 10.0, Adobe Acrobat Pro 9, Adobe Flash Player 10.1, Microsoft Excel 2010, Microsoft Internet Explorer 9, Microsoft Outlook 2010, Microsoft PowerPoint 2010, Microsoft Word 2010 и WinZip Pro 14.5.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты компании Adobe: Photoshop CS5 Extended, Premiere Pro CS5 и After Effects CS5.



Web Development - сценарий, в рамках которого моделируется создание web-сайта. Используются приложения: Adobe Photoshop CS5 Extended, Adobe Premiere Pro CS5, Adobe Dreamweaver CS5, Mozilla Firefox 3.6.8 и Microsoft Internet Explorer 9.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию рыночных тенденций, которые выполняются в Microsoft Excel 2010.



Сценарий 3D Modeling всецело посвящён созданию трёхмерных объектов и рендерингу статичных и динамических сцен с использованием Adobe Photoshop CS5 Extended, Autodesk 3ds Max 2011, Autodesk AutoCAD 2011 и Google SketchUp Pro 8.



В последнем сценарии, System Management, выполняется создание бэкапов и установка программного обеспечения и апдейтов. Здесь задействуются несколько различных версий Mozilla Firefox Installer и WinZip Pro 14.5.



Единственный тип приложений, в которых от процессоров AMD Fusion удаётся добиться приемлемой производительности – это трёхмерное моделирование и рендеринг. В таких задачах количество ядер – весомый аргумент, и четырёхъядерные A8 и A6 могут обеспечить более высокое быстродействие, чем, например, Intel Pentium. Но до уровня, задаваемого процессорами Core i3, в которых реализована поддержка технологии Hyper-Threading, предложения AMD не дотягивают даже в самом благоприятном для себя случае.

Производительность в приложениях

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR , при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1.4 Гбайт.



Измерение производительности в Adobe Photoshop мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test , включающий типичную обработку четырёх 10-мегапиксельных изображений, сделанных цифровой камерой.



При тестировании скорости перекодирования аудио используется утилита Apple iTunes , при помощи которой осуществляется преобразование содержимого CD-диска в AAC-формат. Заметим, что характерной особенностью этой программы является способность использования лишь пары процессорных ядер.



Для измерения скорости перекодирования видео в формат H.264 используется x264 HD тест , основанный на измерении времени обработки исходного видео в формате MPEG-2, записанного в разрешении 720p с потоком 4 Мбит/сек. Следует отметить, что результаты этого теста имеют огромное практическое значение, так как используемый в нём кодек x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч.



Тестирование скорости финального рендеринга в Maxon Cinema 4D выполняется путём использования специализированного теста Cinebench .



Также, мы воспользовались и бенчмарком Fritz Chess Benchmark, который оценивает скорость работы популярного шахматного алгоритма, используемого в основе программ семейства Deep Fritz.



Глядя на приведённые диаграммы, можно ещё раз повторить всё то, что уже было сказано применительно к результатам SYSmark 2011. Процессоры AMD, которые компания предлагает для использования в интегрированных системах, могут похвастать сколь-нибудь приемлемой производительностью лишь в тех вычислительных задачах, где нагрузка хорошо распараллеливается. Например, при 3D-рендеринге, перекодировании видео или при переборе и оценке шахматных позиций. И то, конкурентный уровень быстродействия в этом случае наблюдается лишь у старшего четырёхъядерного AMD A8-3850 с тактовой частотой, которая повышена в ущерб энергопотреблению и тепловыделению. Все же процессоры AMD с 65-ваттным тепловым пакетом пасуют перед любым из Core i3 даже в самом благоприятном для них случае. Соответственно, на фоне Fusion весьма достойно выглядят и представители семейства Intel Pentium: эти двухъядерники выступают примерно также как и трёхъядерный A6-3500 при хорошо распараллеливаемой нагрузке, и превосходят старшие A8 в программах типа WinRAR, iTunes или Photoshop.

В дополнение к проведённым тестам, для проверки того, с каким эффектом для решения повседневных вычислительных задач могут привлекаться мощности графических ядер, мы провели исследование скорости перекодирования видео в Cyberlink MediaEspresso 6.5. Эта утилита обладает поддержкой вычислений на графических ядрах – она поддерживает и Intel Quick Sync и ATI Stream. Наш тест состоял в измерении времени, необходимого для перекодирования полуторагигабайтного 1080p-ролика в формате H.264 (который представлял собой 20-минутную серию популярного телесериала) с уменьшением разрешения для просмотра на iPhone 4.



Результаты разделяются на две группы. В первую попадают процессоры Intel Core i3, которые обладают поддержкой технологии Quick Sync. Числа говорят лучше всяких слов: Quick Sync позволяет перекодировать HD-видеоконтент в несколько раз быстрее, чем при использовании любого другого инструментария. Вторая большая группа объединяет все остальные процессоры, среди которых на первые места попадают CPU с большим количеством ядер. Продвигаемая AMD технология Stream, как видим, никак себя не проявляет, и APU серии Fusion с двумя ядрами показывают ничуть не лучший результат, чем процессоры Pentium, которые перекодируют видео исключительно силами вычислительных ядер.

Производительность графических ядер

Группа игровых 3D тестов открывается результатами бенчмарка 3DMark Vantage, который использовался с профилем Performance.









Изменение характера нагрузки тут же приводит к смене лидеров. Графическое ядро любых процессоров AMD Fusion на практике превосходит любые варианты Intel HD Graphics. Даже Core i3-2125, укомплектованный видеоядром HD Graphics 3000 c двенадцатью исполнительными устройствами, оказывается способным достичь только лишь уровня производительности, демонстрируемого AMD A4-3300 с самым слабым среди всех представленных в тесте Fusion встроенным графическим ускорителем Radeon HD 6410D. Все же остальные процессоры Intel по уровню 3D-быстродействия проигрывают предложениям AMD в два-четыре раза.

Некоторой компенсацией за провал в графической производительности могут выступить результаты теста CPU, однако следует понимать, что скорость CPU и GPU – это не взаимозаменяемые параметры. Стремиться следует к сбалансированности этих характеристик, и как обстоит дело в случае со сравниваемыми процессорами, мы увидим далее, анализируя их игровую производительность, которая зависит от мощности как GPU, так и вычислительной составляющей гибридных процессоров.

Для исследования скорости работы в реальных играх нами были отобраны Far Cry 2, Dirt 3, Crysis 2, бета-версия World of Planes и Civilization V. Тестирование проводилось в разрешении 1280x800, а уровень настроек качества устанавливался в положение Medium.















В игровых тестах складывается весьма позитивная для предложений компании AMD картина. Несмотря на то, что они отличаются довольно-таки посредственной вычислительной производительностью, мощная графика позволяет им показывать хорошие (для интегрированных решений) результаты. Почти всегда представители серии Fusion позволяют получить более высокое число кадров в секунду, чем выдаёт интеловская платформа с процессорами семейств Core i3 и Pentium.

Не спасло положение процессоров Core i3 даже то, что Intel стал встраивать в них производительную версию графического ядра HD Graphics 3000. Укомплектованный им Core i3-2125 оказался быстрее своего собрата Core i3-2120 с HD Graphics 2000 примерно на 50%, но графика, встраиваемая в Llano, ещё быстрее. В результате, даже Core i3-2125 может соперничать разве только с дешёвеньким A4-3300, остальные же носители микроархитектуры Sandy Bridge выглядят и того хуже. А если к показанным на диаграммах результатам присовокупить отсутствие у видеоядер интеловских процессоров поддержки DirectX 11, то ситуация для текущих решений этого производителя представляется ещё более безнадёжной. Исправить её сможет разве только следующее поколение микроархитектуры Ivy Bridge, где графическое ядро получит и гораздо более высокое быстродействие, и современную функциональность.

Даже если отрешиться от конкретных цифр, и посмотреть на ситуацию качественно, то предложения AMD выглядят куда более привлекательным вариантом для игровой системы начального уровня. Старшие процессоры Fusion серии A8 при определённых компромиссах в части экранного разрешения и настроек качества изображения позволяют играть практически в любые современные игры, не прибегая к услугам внешней видеокарты. Никакие же процессоры Intel для дешёвых игровых систем мы порекомендовать не можем – различные варианты HD Graphics пока ещё для использования в этой среде не доросли.

Энергопотребление

Системы, основанные на процессорах с интегрированными графическими ядрами, завоёвывают всё более широкую популярность не только благодаря открывающимся возможностям по миниатюризации систем. Во многих случаях потребители останавливают свой выбор именно на них, руководствуясь открывающимся возможностям по удешевлению компьютеров. Такие процессоры позволяют не только сэкономить на видеокарте, они позволяют собрать и более экономичную в эксплуатации систему, так как её суммарное энергопотребление окажется заведомо ниже потребления платформы с дискретной графикой. Сопутствующий бонус – более тихие режимы работы, так как уменьшение потребления выливается в снижение тепловыделения и возможность использования более простых систем охлаждения.

Именно поэтому разработчики процессоров со встроенными графическими ядрами стараются минимизировать энергопотребление своих продуктов. Большинство рассмотренных в этой статье CPU и APU имеют расчётное типичное тепловыделение, лежащее в пределах 65 Вт – и это негласный стандарт. Однако, как мы знаем, AMD и Intel подходят к параметру TDP несколько по-разному, а потому оценить практическое потребление систем с различными процессорами будет небезынтересно.

На следующих ниже графиках приводится по две величины энергопотребления. Первая – это полное потребление систем (без монитора), представляющее собой сумму энергопотребления всех задействованных в системе компонентов. Вторая – потребление одного только процессора по выделенной для этой цели 12-вольтовой линии питания. В обоих случаях КПД блока питания не учитывается, так как наша измерительная аппаратура устанавливается после блока питания и фиксирует напряжения и токи, поступающие в систему по 12-, 5- и 3.3-вольтовым линиям. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.4 . Для нагрузки графических ядер использовалась утилита FurMark 1.9.1 . Кроме того, для правильной оценки энергопотребления в простое мы активировали все имеющиеся энергосберегающие технологии, а также технологию Turbo Core (в тех случаях, где она поддерживается).



В состоянии покоя все системы показали суммарное энергопотребление, находящееся примерно на одном и том же уровне. При этом, как мы видим, процессоры Intel практически не нагружают процессорную линию питания в простое, а конкурирующие решения AMD, напротив, потребляют по 12-вольтовой выделенной на CPU линии до 8 Вт. Но это вовсе не свидетельствует о том, что представители семейства Fusion не умеют впадать в глубокие энергосберегающие состояния. Различия обуславливаются разной реализацией схемы питания: в Socket FM1-системах от процессорной линии питается как вычислительные и графическое ядра процессора, так и встроенный в процессор северный мост, а в интеловских системах северный мост процессора берёт питание от материнской платы.



Максимальная вычислительная нагрузка обнаруживает, что проблемы процессоров AMD с энергетической эффективностью, присущие Phenom II и Athlon II, никуда не делись и с внедрением 32-нм технологического процесса. Llano используют ту же микроархитектуру и точно также с треском проигрывают Sandy Bridge с точки зрения соотношения производительности на каждый затраченный ватт электроэнергии. Старшие Socket FM1-системы потребляют примерно вдвое больше, чем системы с LGA1155-процессорами Core i3 при том, что вычислительная производительность последних явно выше. Разрыв в энергопотреблении Pentium и младших A4 и A6 не такой огромный, но тем не менее, качественно ситуация не меняется.



При графической нагрузке картина почти такая же – процессоры Intel существенно экономичнее. Но в данном случае неплохим оправданием для AMD Fusion может выступать их существенно более высокая 3D-производительность. Заметьте, в игровых тестах Core i3-2125 и A4-3300 «выжимали» одинаковое количество кадров в секунду, и по потреблению при нагрузке на графическое ядро они тоже ушли друг от друга совсем недалеко.



Одновременная нагрузка на все блоки гибридных процессоров позволяет получить результат, который можно образно представить как сумму двух предшествующих графиков. Процессоры A8-3850 и A6-3650, обладающие 100-ваттным тепловым пакетом, серьёзно отрываются от всей остальной массы 65-ваттных предложений AMD и Intel. Впрочем, даже и без них процессоры Fusion менее экономичны, чем решения Intel того же ценового диапазона.



При использовании процессоров в роли основы медиацентра, занятого проигрыванием видео высокого разрешения, складывается нетипичная ситуация. Вычислительные ядра здесь по большей части простаивают, а декодирование видеопотока возлагается на специализированные встроенные в графические ядра блоки. Поэтому платформам на базе процессоров AMD удаётся добиться неплохой энергоэффективности, в целом их потребление не сильно превосходит потребление систем с процессорами Pentium или Core i3. Более того, самый низкочастотный из AMD Fusion, A6-3500 при таком сценарии использования вообще предлагает наилучшую экономичность.

Выводы

На первый взгляд, подвести итог результатам тестов проще простого. Процессоры AMD и Intel со встроенными графическими ядрами проявили совершенно разнородные преимущества, что позволяет рекомендовать либо тот, либо иной вариант в зависимости от планируемой модели использования компьютера.

Так, сильной стороной процессоров семейства AMD Fusion оказалось встроенное в них графическое ядро со сравнительно высокой производительностью и совместимостью с программными интерфейсами DirectX 11 и Open CL 1.1. Таким образом, эти процессоры можно рекомендовать для тех систем, где качество и скорость 3D-графики имеет не самое последнее значение. В то же время входящие в серию Fusion процессоры используют ядра общего назначения, базирующиеся на старой и медленной микроархитектуре K10, что выливается в их невысокое быстродействие в вычислительных задачах. Поэтому, если вас интересуют варианты, обеспечивающие лучшую производительность в обычных неигровых приложениях, смотреть следует в сторону интеловских Core i3 и Pentium даже несмотря на то, что такие CPU снабжаются меньшим количеством вычислительных ядер, нежели конкурирующие предложения AMD.

Конечно, в целом, подход AMD к дизайну процессоров со встроенным видеоускорителем кажется более рациональным. Предлагаемые компанией модели APU хорошо сбалансированы в том плане, что скорость вычислительной части вполне адекватна скорости графики и наоборот. В результате, старшие процессоры линейки A8 вполне можно рассматривать как возможную основу для игровых систем начального уровня. Даже в современных играх такие процессоры и интегрированные в них видеоускорители Radeon HD 6550D могут обеспечить приемлемую играбельность. С младшими же сериями A6 и A4 с более слабыми вариантами графического ядра ситуация сложнее. Для универсальных игровых систем младшего уровня их производительности уже не хватает, поэтому делать ставку на такие решения можно лишь в тех случаях, когда речь идёт о создании мультимедийных компьютеров, на которых будут запускаться исключительно простые в графическом плане казуальные игры или сетевые ролевые игры прошлых поколений.

Однако что бы там ни говорилось про сбалансированность, для ресурсоёмких вычислительных приложений серии A4 и A6 подходят плохо. Находящиеся в рамках того же бюджета представители линейки Intel Pentium могут предложить существенно более высокое быстродействие в счётных задачах. Говоря по правде, на фоне Sandy Bridge лишь о A8-3850 можно говорить как о процессоре с приемлемой скоростью в общеупотребительных программах. Да и то, его неплохие результаты проявляются далеко не везде и к тому же обеспечиваются увеличенным тепловыделением, что понравится далеко не каждому хозяину компьютера без дискретной видеокарты.

Иными словами, очень жаль, что Intel до сих пор не может предложить достойное по производительности графическое ядро. Даже Core i3-2125, оснащённый самой быстрой в арсенале компании графикой Intel HD Graphics 3000, в играх работает на уровне AMD A4-3300, так как скорость в этом случае упирается в производительность встроенного видеоускорителя. Все же остальные интеловские процессоры и вовсе комплектуются в полтора раза более медленным видеоядром, и в 3D-играх выступают очень блекло, зачастую показывая совершенно неприемлемое число кадров в секунду. Поэтому, думать о процессорах Intel, как о возможной основе системы, способной работать с 3D-графикой, мы бы вообще не рекомендовали. Видеоядро Core i3 и Pentium прекрасно справляется с выводом интерфейса операционной системы и с воспроизведением видео высокого разрешения, но на большее оно не способно. Так что наиболее подходящим применением для процессоров Core i3 и Pentium видится использование в системах, где важна вычислительная мощность ядер общего назначения при неплохой энергоэффективности – по этим параметрам никакие предложения AMD с Sandy Bridge конкурировать не могут.

Ну и в заключение следует напомнить о том, что интеловская платформа LGA1155 гораздо перспективнее, чем AMD Socket FM1. Приобретая процессор серии AMD Fusion, вы должны быть морально готовы к тому, что усовершенствовать компьютер на его основе можно будет в очень ограниченных пределах. AMD планирует выпустить ещё лишь несколько моделей Socket FM1 представителей серий A8 и A6 с немного увеличенной тактовой частотой, а выходящие в следующем году их последователи, известные под кодовым именем Trinitу, совместимостью с этой платформой обладать не будут. У Intel же платформа LGA1155 куда более перспективна. Мало того, что гораздо более производительные в вычислительном плане Core i5 и Core i7 можно установить в неё уже сегодня, но и запланированные на следующий год процессоры Ivy Bridge в купленных сегодня материнских платах работать должны.

Особенности нового поколения и что такое Crystal Well

В новом поколении процессорной архитектуры, Haswell, компания Intel использует несколько модификаций нового графического ядра с кодовыми названиями GT1, GT2, GT3, GT3е. Впрочем, кодовые наименования употреблялись только в период разработки, сейчас для идентификации используются наименования типа Intel HD Graphics HDxxxx. Их сопоставление с индексами на рынке приведено в таблице ниже.

Топовое ядро GT3e более-менее широко применяется только в мобильных решениях. В десктопном сегменте оно представлено только в процессорах форм-фактора BGA, которые распаиваются напрямую на материнские платы. Такое решение больше подходит для встраиваемых систем и вряд ли получит массовое распространение на рынке. В основном настольный сегмент будет довольствоваться ядрами GT1 и GT2.

С одной стороны, использование топовой версии только в мобильных решениях (ну и BGA для десктопов) выглядит логичным: геймеры и все, кому нужна высокая производительность графики, все равно будут использовать дискретные видеокарты, а тем, кому производительность не нужна, хватит любого встроенного решения, в т. ч. и младшей серии. С другой стороны, есть определенные категории пользователей, которые не отказались бы от более производительной графики, но при этом не хотели бы использовать внешний видеоадаптер. Есть и технические моменты: интеграция GT3e в десктопный четырехъядерный кристалл увеличила бы его площадь и тепловыделение, повысила сложность производства и стоимость решения при непонятных рыночных перспективах.

Топовые версии интегрированной графики Haswell получили собственное имя Iris. Точнее, ядро GT3 может, в зависимости от частот, носить наименование HD5000 или Iris 5100, а GT3e - только Iris Pro 5200. То есть собственные имена Iris имеют две модификации. Посмотрим на основные технические характеристики GT3 и GT3e.

Количество графических ядер у всех трех модификаций GT3 одинаковое и равняется 40. Отличие между 5000 и 5100 заключается только в максимальных частотах, а вот в GT3e (Iris Pro 5200) появляется еще одно нововведение, с которым мы познакомились на первых же презентационных слайдах Intel - новый кэш L4/высокоскоростной буфер, который получил название Crystal Well. К сожалению, в реальности он появился только у самого топового решения, Iris Pro 5200. К нему мы еще вернемся, а пока перейдем к GT2 и GT1.

Ядро GT1, названное традиционно Intel HD, ориентировано на бюджетный сегмент и встречается в процессорах Intel Pentium G3xxx. Наиболее распространенной на рынке будет версия GT2, она появится и в настольных, и в мобильных процессорах Haswell. У нее тоже три модификации: HD 4200, HD 4400 и HD 4600, плюс две модификации в серверном сегменте - P4600 и P4700.

Таким образом, в новом поколении архитектуры Core компания Intel представила всего 9 модификаций графического ядра нового поколения. Формально в Sandy Bridge и Ivy Bridge их было меньше - по три: HD3000, HD2000, Intel HD и HD4000, HD2500, Intel HD соответственно. Но там версии с одинаковым названием в разных процессорах тоже имели разные частоты работы. Поэтому сейчас линейка выглядит более логичной.

Посмотрим, как эволюционировали графические решения на примере Sandy Bridge, Ivy Bridge и Haswell. Первое, на что стоит обратить внимание, это поддержка новых API и увеличение количества унифицированных блоков по сравнению с предыдущей архитектурой.

Как можно заметить, с каждым новым поколением графических адаптеров происходит рост количества конвейеров, в среднем примерно на 30% в каждом последующем поколении. Так что заметный рост производительности нам обеспечен. Что касается поддержки API, то изначально Haswell выглядел заметно интереснее из-за поддержки более современных API. Однако в последних версиях драйверов их поддержку добавили и в Ivy Bridge (в скобках указана поддержка API на момент анонса).

Архитектура графической части Haswell

Перейдем к обзору архитектур трех поколений графических решений: Sandy Bridge (HD2000, HD3000), Ivy Bridge (HD2500, HD4000), Haswell.

HD2000/HD3000 (Sandy Bridge)


HD2500/HD4000 (Ivy Bridge)


Как видим, каждое последующее поколение графических адаптеров не только вносит архитектурные изменения в старые функциональные блоки, но и добавляет новые, расширяя архитектуру графического ядра. Правда, стоит отметить, что переход с SB на IB принес больше изменений в архитектуре интегрированной графики, чем переход с IB на Haswell.

С переходом на IB графические ускорители, помимо увеличения количества графических ядер, получили второй текстурный семплер, кэш L3, увеличенные объемы текстурных кэшей L1 и L2. В Haswell архитектурные изменения в основном заключались в увеличении количества графических процессоров, добавлении новых исполнительных блоков, таких как Video Quality Engine (VQE) и Resource Streamer, а также усовершенствовании старых блоков - Texture Sampler, Multi Format Codec. Стоит заметить, что и компоновка исполнительных модулей (EU) изменилась - ранее 16 EU вытягивались в длинную цепочку, теперь же EU располагают сверху и снизу блоков растеризации и кэша L3, по 10 EU. Стоит заметить, что в модификации ядра GT3 не только происходит удвоение EU с 20 до 40, но и дублируется весь блок Slice Common, который содержит в себе блоки растеризации, кэш L3, блоки пиксельных операций. То есть происходит не просто наращивание количества конвейеров, но и удвоение других немаловажных блоков, таких как блоки растеризации, пиксельной обработки и рендера.

Структурная схема графического ядра Haswell

Что ж, рассмотрим нововведения и изменения в архитектуре.

В состав блока Command Streamer теперь входит блок Resource Streamer, который разгружает центральный процессор, беря некоторые функции драйвера на себя. Это позволяет снизить нагрузку на центральный процессор и повысить производительность.

Command Streamer

Переработанный текстурный семплер. По утверждению компании Intel, в некоторых режимах прирост текстурной производительности может достигать четырех раз.

Texture Sampler

Был добавлен блок Video Quality Engine (VQE), отвечающий за качество видео, который позволяет не только улучшить качество видеоизображения, но и снизить потребление электроэнергии. Данный блок уменьшает шумы в видеоизображении, адаптирует цветовую схему и контраст, стабилизирует изображение, а также позволяет производить преобразование частоты кадров видео с 24 fps и 30 fps в 60 fps. Стоит заметить, что увеличение количества кадров в секунду происходит не простым копированием кадров, а интеллектуальным анализом межкадровой оценки движения.

Video Quality Engine

Видеокодек также получил улучшения в виде поддержки новых форматов: кодирование MPEG, улучшение качества кодирования видео, декодирование Motion JPEG, декодирование видео 4К, декодирование SVC (Scalable Video Coding) в AVC, VC1, MPEG2.

Video Codec

Как видим, часть улучшений была направлена на снижение потребления электроэнергии. Графические ядра Haswell позволяют экономить электроэнергию в мультимедийной нагрузке - как видно из слайда, за счет большего распараллеливания ядро Haswell раньше заканчивает работу и раньше погружается в экономичное состояние простоя.

О Crystal Well

Crystal Well представляет собой чип памяти eDRAM объемом 128 МБ, распаянный на одной текстолитовой подложке с процессором. Доступен он только в процессорах с топовой версией интегрированной графики Iris Pro 5200. Данный чип памяти производится, как и процессор, по техпроцессу 22 нм и выступает в качестве промежуточного кэша четвертого уровня. Причем важно отметить, что он кэширует запросы не только видеоускорителя, но и центрального процессора. То есть теоретически производительность центрального процессора при его наличии тоже должна увеличиться.

Что касается скоростных характеристик, то чип eDRAM показывает пропускную способность (ПС) на уровне 50 ГБ/с в каждом направлении, то есть суммарная ПС равняется 100 ГБ/с. Что достаточно хорошо вписывается между ПС оперативной памяти в 25,6 ГБ/с и ПС кэша третьего уровня порядка 180 ГБ/с. При этом латентность такой памяти достаточно невелика - порядка 50-60 нс, тогда как двухканальный ИКП, использующий DDR3-1600, имеет 90-100 нс. Стоит заметить, что кэш L3 в процессорах Haswell имеет латентность около 30 нс. Таким образом, eDRAM достаточно хорошо вписывается по своим скоростным показателям между L3 и ОЗУ.

Физически модуль eDRAM представляет собой отдельный чип с площадью 84 мм², потребляющий до 1 Вт в простое и до 4,5 Вт под нагрузкой. Если бы такой чип устанавливали в десктопные процессоры, то TDP самых «горячих» четырехъядерных процессоров Haswell достиг бы 90 Вт, хотя это все равно значительно ниже, чем у процессоров с сокетом LGA2011 (а можно еще вспомнить AMD, недавно вышедшие процессоры которой имеют TDP 220 Вт). Однако в настольных решениях Crystal Well встречается только в процессорах BGA (т. е. напрямую распаиваемых на материнской плате, а не устанавливаемых в сокет), у которых, скорее всего, система охлаждения будет идти в комплекте.

Тут стоит отметить, что Intel в новом поколении не стала вводить поддержку новых, более скоростных стандартов памяти, так что ее максимальная пропускная способность осталась на уровне 25,6 ГБ/с. Даже HD2500 способна была использовать всю доступную ПС, так что гораздо более мощная HD4600, скорее всего, будет упираться в пропускную способность DDR3-1600, и использование Crystal Well и ей пошло бы на пользу. Не говоря уже о более мощных модификациях встроенной графики. В общем, логично было бы ожидать либо поддержки DDR3-1866 или DDR3-2133, либо более обширного списка процессоров с Crystal Well, либо и того, и другого одновременно. В итоге же мы имеем нераскрытый до конца потенциал нового поколения графических адаптеров.

Прим. ред.: Мне кажется, что корни решений Intel по использованию Crystal Well стоит искать не в технической, а в финансовой плоскости. С технической точки зрения это может быть и перспективное решение, но довольно затратное по финансам: два чипа на одной подложке в любом случае стоят заметно дороже, чем один. И при этом у технологии очень туманные рыночные перспективы. Поэтому сейчас Intel, скорее всего, «пробует воду»: выпустив всего пару моделей, компания будет отслеживать их судьбу на рынке и смотреть, станет решение популярным или нет. С этой точки зрения все выглядит логично: либо BGA, где процессор идет в конкретный продукт с определенным позиционированием, либо мобильные решения, где востребованность интегрированной графики существенно выше из-за отсутствия места и требований по энергопотреблению. Кстати, и спрос в этом сегменте заметно выше.

Что же касается поддержки памяти, то производитель, видимо, ориентировался в основном на DDR3L , а у нее частоты работы не выросли. Плюс, поддержка более быстрой памяти вряд ли принесет дивиденды в реальной жизни, особенно учитывая, что в большинстве случаев память устанавливают производители готовых систем, а они тоже смотрят больше на стоимость, а не на скорость.

Для наглядности приведем сравнение теоретической максимальной производительности.

Частота чипа Частота/шина/тип памяти ПСП Теоретическая производительность
Intel HD2000 (SB) 1250 МГц 1333 МГц/128 бит/DDR3 21,2 ГБ/с 60 GFLOPs
Intel HD3000 (SB) 1350 МГц 1333 МГц/128 бит/DDR3 21,2 ГБ/с 129,6 GFLOPs
Intel HD2500 (IB) 1150 МГц 1600 МГц/128 бит/DDR3 25,6 ГБ/с 110,4 GFLOPs
Intel HD4000 (IB) 1300 МГц 1600 МГц/128 бит/DDR3 25,6 ГБ/с 332,8 GFLOPs
Intel HD4600 (Haswell) 1350 МГц 1600 МГц/128 бит/DDR3 25,6 ГБ/с 432 GFLOPs
Intel Iris Pro 5200 (Haswell) 1300 МГц 1600 МГц/128 бит/DDR3+Crystal Well 25,6+2×50 ГБ/с 832 GFLOPs
AMD A8-3870K (Llano) 600 МГц 1866 МГц/128 бит/DDR3 29,9 ГБ/с 480 GFLOPs
AMD A10-5800K (Trinity) 800 МГц 1866 МГц/128 бит/DDR3 29,9 ГБ/с 614 GFLOPs
AMD A10-6800K (Richland) 844 МГц 2133 МГц/128 бит/DDR3 34 ГБ/с 779 GFLOPs
GeForce GTX 650 (GK107-450-A2) 1058 МГц 5000 МГц/128 бит/GDDR5 80 ГБ/с 812,5 GFLOPs
GeForce GT 640 (GF116) 720 МГц 1782 МГц/192 бит/DDR3 42,8 ГБ/с 414,7 GFLOPs

Для Ivy Bridge указаны частоты для LGA-модификаций.

Из данной таблицы можно сделать следующие наблюдения и выводы:

  • Теоретическая пиковая производительность (в GFLOPs) в каждом поколении графических адаптеров Intel увеличивается на 150%: переход с топовой модификации графического ядра Sandy Bridge HD3000 на топовую HD4000 - +156,8%, переход с HD4000 на топовый Iris Pro 5200 - +150%, а вот переход с топовой HD4000 на среднюю модификацию графического ядра Haswell HD4600 дает прибавку всего лишь около 30%. Впрочем, значительный рост у Intel во многом объясняется изначально низким уровнем производительности. AMD, например, исходно встроили в APU производительные (для своего класса) графические решения, поэтому для них прирост в GFLOPs от поколения к поколению составляет около 30%;
  • Топовый вариант интегрированной графики Intel, Iris Pro 5200, показывает на 6,8% больше пиковой производительности, чем новый AMD A10-6800K, но при этом решение среднего уровня HD4600 уже отстает на 10% от AMD A8-3870K (Llano);
  • Если подобрать конкурентов для Iris Pro 5200 и HD4600 по пиковой производительности из дискретных видеокарт nVidia, то получится, что Iris Pro 5200 на 2,4% производительнее GeForce GTX 650 (GK107-450-A2), а HD4600 на 4,2% превосходит GeForce GT 640 (GF116);
  • Производительность современных графических ускорителей во многом зависит от скорости работы с видеопамятью. Поэтому у интегрированных решений с этим всегда проблемы: мало того, что они работают с по определению более медленной DDR3, так еще и приходится делить ее с центральным процессором. Например, GeForce GTX 650 (GK107-450-A2) имеет ПСП памяти 80 ГБ/с, а что мог предложить Ivy Bridge? Всего лишь 25,6 ГБ/с суммарно на ГП и ядра ЦП. AMD в каждом поколении вводит поддержку более скоростных стандартов памяти, и теперь максимум для ее последнего поколения - 2133 МГц, что позволило достичь 34 ГБ/с. Intel, как мы знаем из обзора архитектуры процессоров Haswell , не стала вводить поддержку новых стандартов памяти, оставшись на уровне DDR3-1600. Поэтому для устранения узкого места в самом производительном решении ей пришлось добавить промежуточный буфер/кэш L4 (Crystal Well) объемом в 128 МБ с пропускной способностью в 50 ГБ/с в каждом направлении (суммарно 100 ГБ/с). Так что при работе с ним ПСП будет превосходить даже ПСП у дискретных решений - другой вопрос, что объем этого буфера небольшой.

Подводя итог, можно сделать некоторые предположения:

Если производительность интегрированной графики Intel будет и дальше расти такими же или хотя бы близкими темпами, то пропускной способности имеющихся на сегодня стандартов памяти следующему поколению будет очень серьезно не хватать - фактически, это «бутылочное горлышко» может съесть весь выигрыш. Так что надо будет либо повышать ПСП, вводя поддержку DDR4 или DDR3 в несколько каналов, либо искать другие решения. Возможно, Crystal Well, который сейчас представляет собой отдельный чип, переедет в основной кристалл (как в свое время переехала интегрированная графика при переходе на Sandy Bridge) и станет полноправной частью ядра Broadwell. Правда, судя по имеющейся информации, в Broadwell будет несколько чипов на одной подложке... В общем, тут пока много вопросов.

Впрочем, AMD также, скорее всего, столкнется с серьезной нехваткой ПСП, и примерные направления развития у нее те же: либо более быстрая память DDR4, либо «вспомнить» свою (ATI) разработку HyperMemory (небольшой кадровый буфер для интегрированной видеокарты, распаянный на материнской плате) и попытаться приспособить ее под современные задачи.

Наконец, не будем забывать про два серьезных козыря нового поколения интегрированной графики Intel: поддержку OpenCL, причем приложений с его поддержкой становится все больше, и новую версию Quicksync, существенно упрощающую работу с кодированием видео.

Выводы

Итак, давайте переходить к выводам. Как и в процессорной части обзора архитектуры Haswell, разобьем вывод на несколько частей.

Десктоп

Покупатели настольных компьютеров с интегрированной графикой Haswell получают ряд серьезных преимуществ. В первую очередь, это серьезно возросшая производительность графической подсистемы, а также улучшения в работе с видео благодаря Quicksync и поддержка OpenCL, позволяющая существенно поднять производительность во многих приложениях. Теоретически, владелец компьютера с HD4600 сможет даже поиграть в некоторые старые игры в высоком разрешении.

Если говорить об апгрейде, то разница с Ivy Bridge слишком мала, чтобы даже задумываться о переходе. Видеоядро Sandy Bridge существенно слабее, но прирост все равно не настолько большой, чтобы оправдать замену процессора и материнской платы. Разве что вам обязательно нужен OpenCL, который встроенной графикой Sandy Bridge не поддерживается.

А вот владельцам процессоров предыдущих поколений стоит всерьез задуматься. И дело не только в росте производительности, но и в серьезном повышении эффективности системы в целом. При том же уровне производительности, что и у старых дискретных решений среднего уровня, покупатели смогут вообще отказаться от внешнего графического адаптера. Это и дешевле, и корпус можно выбрать заметно меньше. Кроме того, энергопотребление системы, а значит - нагрев окружающего пространства и шум вентиляторов охлаждения, будет гораздо меньше.

Серверы и рабочие станции

Необходимости перехода с Xeon E3-12xx и Xeon E3-12xx v2 ради нового графического ядра P4600 нет. Если говорить о рабочих станциях, то хоть какой-то смысл появляется только при переходе с Sandy Bridge из-за отсутствия поддержки в нем OpenCL (и только для редких серверных приложений, которые OpenCL используют).

Мобильные решения

Это, пожалуй, самый интересный и перспективный сегмент, и к тому же самый массовый на сегодняшний день. Тем более что в мобильных системах чистая производительность сейчас не играет решающей роли, а рассматривается лишь как одна из составляющих эффективности системы наряду с энергосбережением и другими факторами.

Для начала посмотрим на основные линейки, GT2 и GT3(e). Для GT2 оценивать имеет смысл основное решение HD 4600.

Современный универсальный видеоадаптер обладает достаточным уровнем производительности для любых задач, кроме узкоспециальных (трехмерное моделирование, например) и игр. Впрочем, если снизить настройки качества графики, то в относительно простые или относительно старые игры играть можно.

Общий уровень производительности превосходит HD 4000, но в обычных задачах (кроме игр) это вряд ли будет заметно. HD 4600 имеет хорошую оптимизацию для работы с видео (Quicksync) и любыми приложениями, умеющими использовать преимущества OpenCL. Причем здесь важен не только рост скорости выполнения задач, но и рост общей энергоэффективности за счет оптимизации. Но в Ivy Bridge поддержка этих технологий тоже есть, поэтому переходить с него на Haswell бессмысленно. А вот переход с Sandy Bridge уже имеет смысл: и скорость заметно выше, и поддержки OpenCL там не было, и по энергоэффективности Haswell далеко впереди. В мобильных системах это важный фактор.

HD/Iris Pro 5x00

Старшая версия интегрированной графики (особенно с Crystal Well) имеет заметно более высокую производительность, что позволяет существенно расширить список доступных задач и игр, включая и относительно современные. Тем более что пока у большинства ноутбуков относительно невысокие разрешения экрана, что облегчает задачу для графического адаптера. Наличие Crystal Well должно увеличивать и производительность системы в целом, хотя тут многое будет зависеть от типа задач.

Таким образом, современный Haswell с интегрированной графикой уровня 5ххх, а особенно с Iris Pro 5200, выглядит гораздо интереснее, чем Ivy Bridge c дискретной графикой младших серий. И речь даже не о чистой производительности (не факт, что разница с Ivy Bridge + дискретная графика будет такой уж разительной), а скорее в росте общей энергоэффективности системы. Плюс, это позволит упростить и удешевить конструкцию ноутбука (выкинув большой чип и всю его систему охлаждения). Таким образом, по общей эффективности ноутбуки с Iris/Iris Pro будут существенно обгонять предыдущее поколение.

Другое дело, что сама по себе рыночная ниша для того же Iris Pro 5200 выглядит довольно узкой: кому графическая производительность не нужна - те остановятся на HD 4600, а кому она очень важна - те так и так выберут современную дискретную графику. То есть этот чип выгодно использовать только в профессиональных моделях, которые должны сочетать высокую производительность и портативность. В остальных случаях особого смысла в нем нет.

Работа в паре с дискретной графикой

Наконец, стоит отметить, что Haswell эффективнее и при совместной работе с внешней графикой. Сейчас политика Intel такова, что графика обязательно должна быть гибридной: в случае, когда нагрузка невелика, работает интегрированный адаптер, а если требуется высокая производительность (в играх и пр.), то подключается мощная дискретная графика. Так вот, чем более мощным и оптимизированным будет интегрированный адаптер, тем больше задач он сможет решать самостоятельно - а это прямой выигрыш в энергопотреблении (т. е. ноутбук будет меньше греться, меньше шуметь, дольше работать от батарей и пр.).

В результате, переход на Haswell объективно выгоден не в силу роста производительности, а из-за того, что существенно растет энергоэффективность системы. И хотя преимущество не настолько велико, чтобы оправдать переход с предыдущего поколения, но в целом интегрированная графика Haswell представляет собой существенный шаг вперед, значительно поднимающий эффективность системы в целом.

Встроенный графический процессор как для геймеров, так и для нетребовательных пользователей играет важную роль.

От него зависит качество игр, фильмов, просмотра видео в интернете и изображений.

Принцип работы

Графический процессор интегрируется в материнскую плату компьютера - так выглядит встроенный графический .

Как правило, используют его, чтобы убрать необходимость установки графического адаптера - .

Такая технология помогает снизить себестоимость готового продукта. Кроме того, благодаря компактности и нетребовательного энергопотребления таких процессоров их часто устанавливают в ноутбуки и маломощные настольные компьютеры.

Таким образом, встроенные графические процессоры заполонили эту нишу настолько, что 90% ноутбуков на полках магазинов США имеют именно такой процессор.

Вместо обычной видеокарты во встроенных графиках часто вспомогательным средством служит сама оперативная память компьютера.

Правда, такое решение несколько ограничивает производительность девайса. Всё же сам компьютер и графический процессор используют одну шину для памяти.

Так что подобное “соседство” сказывается на выполнении задач, особенно при работе со сложной графикой и во время игрового процесса.

Виды

Встроенная графика имеет три группы:

  1. Графика с разделяемой памятью - устройство, в основе которого совместное с главным процессором управление оперативной памятью. Это значительно уменьшает стоимость, улучшает систему энергосбережения, однако ухудшает производительность. Соответственно, для тех, кто работает со сложными программами, встроенные графические процессоры такого вида с большей вероятностью не подойдут.
  2. Дискретная графика - видеочип и один-два модуля видеопамяти распаяны на системной плате. Благодаря этой технологии существенно улучшается качество изображения, а также становится возможным работать с трехмерной графикой с наилучшими результатами. Правда, заплатить за это придется немало, а если вы и подыскиваете высокомощный процессор по всем параметрам, то стоимость может быть неимоверно высокой. К тому же, счет за электричество несколько вырастет - энергопотребление дискретных графических процессоров выше обычного.
  3. Гибридная дискретная графика - сочетание двух предыдущих видов, что обеспечило создание шины PCI Express. Таким образом, доступ к памяти осуществляется и через распаянную видеопамять, и через оперативную. С помощью этого решения производители хотели создать компромиссное решение, но оно все же не нивелирует недостатки.

Производители

Занимаются изготовлением и разработкой встроенных графических процессоров, как правило, крупные компании - , и , но подключаются к этой сфере и многие небольшие предприятия.

Сделать это несложно. Найдите надпись Primary Display или Init Display First. Если не видите что-то такое, поищите Onboard, PCI, AGP или PCI-E (всё зависит от установленных шин на материнку).

Выбрав PCI-E, к примеру, вы включаете видеокарту PCI-Express, а встроенную интегрированную отключаете.

Таким образом, чтобы включить интегрированную видеокарту нужно найти соответствующие параметры в биосе. Часто процесс включения автоматический.

Отключить

Отключение лучше проводить в БИОСе. Это самый простой и незатейливый вариант, подходящий для практически всех ПК. Исключением являются разве что некоторые ноутбуки.

Снова же найдите в БИОС Peripherals или Integrated Peripherals, если вы работаете на десктопе.

Для ноутбуков название функции другое, причем и не везде одинаковое. Так что просто найдите что-то относящиеся к графике. К примеру, нужные опции могут быть размещены в разделах Advanced и Config.

Отключение тоже проводится по-разному. Иногда хватает просто щелкнуть “Disabled” и выставить PCI-E видеокарту первой в списке.

Если вы пользователь ноутбука, не пугайтесь, если не можете найти подходящий вариант, у вас априори может не быть такой функции. Для всех остальных устройств же правила простые - как бы не выглядел сам БИОС, начинка та же.

Если вы имеете две видеокарты и они обе показаны в диспетчере устройств, то дело совсем простое: кликнете на одну из них правой стороной мышки и выберите “отключить”. Правда, учитывайте, что дисплей может потухнуть. У , скорее всего, так и будет.

Однако и это решаемая проблема. Достаточно перезагрузить компьютер или же по .

Все последующие настройки проведите на нем. Если не работает данный способ, сделайте откат своих действий с помощью безопасного режима. Также можете прибегнуть и к предыдущему способу - через БИОС.

Две программы - NVIDIA Control Center и Catalyst Control Center - настраивают использование определенного видеоадаптера.

Они наиболее неприхотливы по сравнению с двумя другими способами - экран вряд ли выключится, через БИОС вы тоже случайно не собьете настройки.

Для NVIDIA все настройки находятся в разделе 3D.

Выбрать предпочитаемый видеоадаптер можно и для всей операционной системы, и для определенных программ и игр.

В ПО Catalyst идентичная функция расположена в опции «Питание» в подпункте “Switchable Graphics”.

Таким образом, переключиться между графическими процессорами не составляет особого труда.

Есть разные методы, в частности, и через программы, и через БИОС, Включение или выключение той или иной интегрированной графики может сопутствоваться некоторыми сбоями, связанных преимущественно с изображением.

Может погаснуть или просто появиться искажения. На сами файлы в компьютере ничего не должно повлиять, разве что вы что-то наклацали в БИОСе.

Заключение

В итоге, встроенные графические процессоры пользуются спросом за счет своей дешевизны и компактности.

За это же придется платить уровнем производительности самого компьютера.

В некоторых случая интегрированная графика просто необходима - дискретные процессоры идеальны для работы с трехмерными изображениями.

К тому же, лидеры отрасли - Intel, AMD и Nvidia. Каждый из них предлагает свои графические ускорители, процессоры и другие составляющие.

Последние популярные модели - Intel HD Graphics 530 и AMD A10-7850K. Они довольно функциональны, но имеют некоторые огрехи. В частности, это относится к мощности, производительности и стоимости готового продукта.

Включить или отключить графический процессор со встроенным ядром можно или же самостоятельно через БИОС, утилиты и разного рода программы, но и сам компьютер вполне может сделать это за вас. Всё зависит от того, какая видеокарта подключена к самому монитору.

  • Сокет: AM4
  • Количество ядер/потоков: 4/4
  • Количество графических ядер: 6
  • Базовая частота: 3.8 ГГц
  • Графика: Radeon R7
  • Частота графики: 1 ГГц
  • Разгон: да
  • Мощность TDP: 65 Вт

Открывает наш список A10-9700 серии A. Эта серия представляет собой процессоры с интегрированной графикой и низким энергопотреблением, которые обычно встречаются в на базе и стоят дешевле всех остальных APU. Модель A10-9700 основана на архитектуре Excavator, которая предшествовала Zen и использует устаревшую графику Radeon R7, хотя и совместима с сокетом AM4.

В целом A10-9700 вряд ли можно назвать предпочтительным вариантом, так как он серьезно уступает более новым и совершенным процессорам на архитектуре Zen с графикой Vega. Действительно, это четырехъядерный процессор с частотой 3,5 ГГц, разблокированным множителем и не очень высоким энергопотреблением, хотя архитектура 28 нм и относительно высокая цена порядка 80 долларов могут представлять определенную проблему. Он не в состоянии конкурировать с новыми процессорами архитектуры Zen в плане производительности, а в данном ценовом диапазоне хватает моделей с интегрированной графикой и без, которые существенно его превосходят.

В целом, это была достойная модель для своего времени, но в ее вряд ли можно рекомендовать к покупке. Разве что купить подержанный или со скидкой при сильно ограниченном бюджете.

Плюсы

  • Достойная производительность

Минусы

  • Устаревшая архитектура
  • Плохое соотношение цена-качество

AMD Athlon 200GE

Характеристики

  • Сокет: AM4
  • Количество ядер/потоков: 2/4
  • Количество графических ядер: 3
  • Базовая частота: 3.2 ГГц
  • Графика: Vega 3
  • Частота графики: 1 ГГц
  • Разгон: нет
  • Мощность TDP: 35 Вт

Если вам требуется доступность, вы вряд ли найдете модель лучше, чем новый Athlon 200GE. Под этим брендом AMD выпускает достойные бюджетные решения начиная с 1999 года. Он дожил до наших дней, и даже в эпоху Ryzen готов представить ряд надежных и доступных процессоров.

Самое выдающееся в Athlon 200GE – наличие последней графической системы Vega. Конечно, здесь всего три ядра, но в любом случае это достойный игровой процессор начального уровня с интегрированной графикой, особенно учитывая его цену. Конечно, он не способен тягаться с более мощными процессорами Ryzen или большинством моделей Intel в плане вычислительной мощности, но при стоимости всего в 50 долларов он заметно превосходит аналогичные по цене процессоры Intel Celeron. Более того, он превосходит даже рассмотренный выше A10, хотя стоит почти вдвое дешевле.

Все это делает 200GE идеальным игровым APU начального уровня, а благодаря использованию сокета AM4 дальнейший апгрейд с установкой более мощных процессоров не составит труда. Если вам нужен самый дешевый процессор с интегрированной графикой для игры в разрешении 720p и , этот Athlon вас не разочарует.

Плюсы

  • Достойная производительность за эти деньги
  • Хорошее соотношение цена-качество
  • Очень низкое энергопотребление

Минусы

  • Множитель не разблокирован
  • Не самый мощный процессор в целом

AMD Ryzen 3 2200G

Характеристики

  • Сокет: AM4
  • Количество ядер/потоков: 4/4
  • Количество графических ядер: 8
  • Базовая частота: 3.5 ГГц
  • Графика: Vega 8
  • Частота графики: 1.1 ГГц
  • Разгон: да
  • Мощность TDP: 65 Вт

Хотите что-то посерьезнее? Тогда обратите внимание на Ryzen 3 2200G. Благодаря 8 графическим ядрам Vega это второй по производительности из всех существующих процессоров с интегрированной графикой, а по соотношению цена-качество он, пожалуй, вообще самый лучший.

В сущности, у Ryzen 3 2200G есть все, за что мы так любим Ryzen: низкая стоимость, хорошее соотношение цена-качество, разблокированный множитель и компактный, но достаточно тихий кулер Wraith Stealth. И конечно же, интегрированная графика Vega. Как же он показывает себя относительно конкурентов? Практически не оставляет им шансов. Если сравнить его с чуть более дорогим Intel i3-8100, он немного отстает в плане вычислительных задач, но на голову выше в плане графики. Взгляните на видео ниже:

Как вы можете видеть, интегрированная графика Intel не может сравниться с Vega: 2200G вдвое превосходит i3-8100 в большинстве игр. Учитывая, что этот процессор дешевле бюджетного решения Intel, он становится лидером нашего рейтинга по соотношению цена-качество.

Плюсы

  • Отличная графическая производительность
  • Дешевле конкурентов
  • Великолепное соотношение цена-качество

Минусы

  • Не такой быстрый в вычислительных задачах
  • Небольшой штатный кулер не подойдет для разгона

AMD Ryzen 5 2400G

Характеристики

  • Сокет: AM4
  • Количество ядер/потоков: 4/8
  • Количество графических ядер: 11
  • Базовая частота: 3.6 ГГц
  • Графика: Vega 11
  • Частота графики: 1.2 ГГц
  • Разгон: да
  • Мощность TDP: 65 Вт

И наконец, если Ryzen 3 2200G для вас недостаточно хорош и вам нужен лучший из существующих процессоров с интегрированной графикой, то есть Ryzen 5 2400 G. Он во всем превосходит вышеупомянутую модель, но несколько дороже.

Главными преимуществами модели Ryzen 5 по сравнению с Ryzen 3 2200G являются многопоточность (число потоков выросло до 8) и три дополнительных графических ядра Vega. Все это вносит свой вклад в общую производительность этого процессора. В плане графики вы видели, на что способны 8 ядер Vega, так что примерно представляете, чего позволят достичь 11. Стоит ли говорить, что этот наиболее мощный на данный момент APU превосходит по производительности даже некоторые бюджетные дискретные . Конечно, до RX 560 или GTX 1050 он недотягивает, но позволяет играть даже в разрешении 1080p.

Кроме того, благодаря 8 потокам он лучше справляется с многозадачностью, чем предыдущая модель Ryzen 3, хотя и уступает Intel в задачах, где задействован только один поток. Как и раньше, Intel предоставляет большую вычислительную мощность, но именно графика обеспечивает Ryzen 5 преимущество.

В целом Ryzen 5 2400G вызывает сомнения в плане соотношения цена-качество. Он определенно является шагом вперед в плане графики и многозадачности, но стоит ли это улучшение дополнительных 50 долларов – вопрос открытый.

Плюсы

  • Наиболее мощный APU на данный момент
  • Лучшая интегрированная графика

Минусы

  • Ограниченная производительность в однопотоковых задачах
  • Сомнительное соотношение цена-качество

Стоит ли покупать процессор с Графическим ускорителем?

Итак, мы уже упоминали, что аббревиатура APU расшифровывается «accelerated processing unit» и была введена компанией AMD в качестве обозначения процессора, в котором основные и графические ядра располагаются на одном чипе. AMD – единственный производитель игровых APU, и несмотря на наличие интегрированной графики в процессорах Intel серии Core, по производительности они не в состоянии конкурировать с новыми APU на базе Vega.

Но, как известно, мастером на все руки быть невозможно, и для APU данная проблема тоже характерна. Они не такие быстрые в вычислительных задачах, как обычные процессоры того же ценового диапазона, а в плане графической производительности большинство из них уступает даже самым дешевым дискретным видеокартам.

Тем не менее, APU остаются непревзойденными в соотношении цена-качество. Зачем тратить 200 долларов на процессор и видеокарту начального уровня, если процессор с графическим ускорителем справится с их задачей за вдвое меньшие деньги? С другой стороны, если вам нужны трехзначные значения частоты кадров, или вы пользуетесь приложениями с большой нагрузкой на процессор, то стоит поискать что-нибудь помощнее.

Наш выбор

Итак, какой же процессор с графическим ускорителем из рассмотренных выше мы можем порекомендовать и кому?

Лучшая бюджетная модель – AMD Athlon 200GE

Скромный Athlon не привлекает восторженных взглядов и не зашкаливает в бенчмарках, но в самом низу начального уровня 200GE просто доминирует. Он невероятно дешевый, а производительность за такие деньги более чем достаточна. Кроме того, благодаря использованию стандартного сокета AM4, который еще не скоро выйдет из моды, будущий апгрейд будет гораздо легче.

Лучшее соотношение цена-качество – AMD Ryzen 3 2200G

Об этой модели Ryzen можно сказать мало чего такого, что уже не было сказано. У него неплохая вычислительная мощность, а 8 ядер Vega обеспечивают графическую производительность, недостижимую для интегрированной графики Intel. Учитывая стоимость, он может дать фору даже некоторым дискретным видеокартам. В целом мы можем сказать, что это предпочтительный вариант для большинства геймеров с ограниченным бюджетом.

Лучший в общем зачете – AMD Ryzen 5 2400G

Как мы уже говорили, Ryzen 5 2400G – просто лучший на данный момент процессор с графическим ускорителем. Благодаря сочетанию четырех процессорных ядер с восемью потоками и 11 ядер Vega он действительно выглядит «мастером на все руки». Конечно, недостатком является чуть более высокая цена, чем у 2200G, производительность которого и так достаточна для начального уровня.