Компьютеры Windows Интернет

Виды pci e слотов. Зачем нужен переходник pci-e pci — подробное руководство. Форматы шины PCI-E

PCI — Express (PCIe , PCI — E ) – последовательная, универсальная шина впервые обнародованная 22 июля 2002 года.

Является общей , объединяющей шиной для всех узлов системной платы, в которой соседствуют все подключённые к ней устройства. Пришла на замену устаревающей шине PCI и её вариации AGP , по причине возросших требований к пропускной способности шины и невозможности за разумные средства улучшить скоростные показатели последних.

Шина выступает как коммутатор , просто направляя сигнал из одной точки в другую не изменяя его. Это позволяет без явных потерь скорости, с минимальными изменениями и ошибками передать и получить сигнал.

Данные по шине идут симплексно (полный дуплекс), то есть одновременно в обе стороны с одинаковой скоростью, причём сигнал по линиям, течёт непрерывно , даже при отключении устройства (как постоянный ток, или битовый сигнал из нулей).

Синхронизация построена избыточным методом. То есть вместо 8 бит информации, передаётся 10 бит , два из которых являются служебными (20% ) и в определённой последовательности служат маячками для синхронизации тактовых генераторов или выявления ошибок . Поэтому, заявленная скорость для одной линии в 2.5 Гбитс , на самом деле равна примерно 2.0 Гбитс реальных.

Питание каждого устройства по шине, подбирается отдельно и регулируется с помощью технологии ASPM (Active State Power Management ). Она позволяет при простое (без подачи сигнала) устройства занижать его тактовый генератор и переводить шину в режим пониженного энергопотребления . Если сигнал не поступал в течение нескольких микросекунд, устройство считается неактивным и переводится в режим ожидания (время зависит от типа устройства).

Скоростные характеристики в двух направлениях PCI — Express 1.0 :*

1 x PCI —E ~ 500 Мбс

PCI —E ~ 2 Гбс

8 x PCI —E ~ 4 Гбс

16х PCI —E ~ 8 Гбс

32х PCI-E ~ 16 Гбс

*Скорость передачи данных в одном направлении в 2 раза ниже данных показателей

15 января 2007 года, PCI —SIG выпустила обновлённую спецификацию именуемую PCI-Express 2.0

Основным улучшением стала в 2 раза увеличенная скорость передачи данных (5.0 Ггц , против 2.5Ггц в старой версии). Усовершенствованию подвергся также двухточечный протокол передачи данных (точка-точка), доработана программная составляющая и добавлена система программного мониторинга за скоростью шины. При этом сохранилась совместимость с версиями протокола PCI —E 1.х

В новой версии стандарта (PCI — Express 3.0 ), главным нововведением будет измененная система кодирования и синхронизации . Вместо 10 битной системы (8 бит информации, 2 бита служебных), будет применяться 130 битная (128 бит информации, 2 бита служебных). Это позволит снизить потери в скорости с 20% до ~1.5% . Будет также переработан алгоритм синхронизации передатчика и приёмника, улучшен PLL (phase-locked loop). Скорость передачи увеличится предположительно в 2 раза (в сравнении с PCI —E 2.0 ), при этом сохранится совместимость с прошлыми версиями PCI —Express .

Возможности и преимущества

Унифицированная архитектура NVIDIA®

Полностью унифицированное графическое ядро динамически распределяет работу по обработке геометрии, вершинных шейдеров, физики или закраски пикселей, обеспечивая превосходную графическую мощь.

Архитектура параллельных вычислений NVIDIA CUDA™ 1

Технология CUDA раскрывает мощь ядер графического процессора и ускоряет самые требовательные системные задачи, например, перекодирование видео, обеспечивая невероятный прирост производительности по сравнению с традиционными CPU.

Поддержка DirectCompute

Полная поддержка DirectCompute, API для вычислений на GPU от Microsoft

Поддержка OpenCL

Поддержка OpenCL

Поддержка Microsoft Windows 7

Windows 7 – операционная система нового поколения, которая будет отмечена существенным усовершенствованием способа, используемого операционной системой для раскрытия преимуществ графических процессоров, что обеспечит небывалый визуальный опыт. Используя эти преимущества для графики и вычислений, Windows 7 сделает современные ПК не только более интерактивными и привлекательными в плане графики, но и полностью удовлетворит требования пользователей в скорости и производительности.

Унифицированная драйверная архитектура NVIDIA® GeForce® (UDA)

Предлагает проверенный уровень совместимости, надёжности и стабильности в работе с широким диапазоном игр и приложений. Драйверы GeForce обеспечивают беспрецедентную работу каждому пользователю и поддерживают высокую производительность и обновление возможностей на протяжении всего срока службы графических процессоров GeForce.

Технология GigaThread™

Массивная многопоточная архитектура поддерживает тысячи независимых параллельных потоков, обеспечивая невероятную вычислительную силу и работу усовершенствованных программ закраски следующего поколения.

Движок NVIDIA® Lumenex™

Движок NVIDIA® Lumenex™

Технология 16

кратного сглаживания

Битное освещение с широким динамическим диапазоном (HDR) с плавающей точкой

Удвоенная по сравнению с предыдущим поколением точность, обеспечивающая невероятно реалистичные эффекты освещения, теперь с поддержкой сглаживания.



Технология NVIDIA® PureVideo® HD 2

Это сочетание ускорения декодирования видео высокой четкости и постобработки, обеспечивающее беспрецедентную чистоту изображения, плавное видео, правильные цвета и точное масштабирование изображения для фильмов и видео.

Аппаратное ускорение декодирования

Обеспечивает ультраплавное воспроизведение фильмов высокой и стандартной четкости H.264, VC-1, WMV, DivX, MPEG-2 и MPEG-4 без необходимости использования двух или четырёх ядерного центрального процессора.

Двухпоточное аппаратное ускорение

Поддержка режима «картинка-в-картинке» для интерактивного просмотра фильмов Blu-ray и HD DVD.

Динамическое повышение контраста и растягивание цвета

Постобработка и оптимизация фильмов высокой четкости сцена за сценой для поразительной чистоты изображения.

Еще более лучшая устойчивость к ошибкам

Исправляйте ошибки и восстанавливайте потери в широковещательном контенте для обеспечения четкого качественного воспроизведения.

Продвинутый пространственно-временной деинтерлейсинг

Повышает резкость чересстрочного контента в HD и стандартном разрешении на прогрессивных дисплеях, обеспечивая четкое, ясное изображение, сравнимое с возможностями продвинутых домашних кинотеатров.

Высококачественное масштабирование

Повышение разрешения фильмов до HDTV. При этом сохраняется четкость и ясность изображения. Также понижение разрешения видео, включая HD, с сохранением деталей.

Обратное телекино (3:2 & 2:2 коррекция)

Восстановление оригинальных изображений из фильмов, конвертированных в видео (DVDs, 1080i HD контент), более точное воспроизведение видео и превосходное качество изображения.

Коррекция неудачного редактирования

При редактировании видео внесенные поправки могут нарушить нормальную развертку 3:2 или 2:2. Технология PureVideo использует продвинутые техники обработки для обнаружения неудачных правок, восстановления исходного контента и визуализации превосходных деталей изображения кадр за кадром, обеспечивая плавное натуральное видео.

Подавление шумов

Повышение качества видео благодаря удалению нежелательных артефактов.

Улучшение краев объектов

Более четкие изображения в видео благодаря повышению контраста вокруг линий и объектов.

Поддержка Dual-link HDCP 3

Удовлетворение спецификациям по управлению защитой вывода (HDCP) и безопасности для формата Blu-ray для воспроизведения защищенного видео контента на HDCP совместимых мониторах.

Поддержка Dual Dual-link DVI

Работает с самыми большими в индустрии плоскопанельными дисплеями с самым высоким разрешением (до 2560x1600 пикселей) и поддержкой защиты широкополосных цифровых данных (HDCP).

Поддержка HDMI 1.3a

Полностью интегрированная поддержка HDMI 1.3a с поддержкой xvYCC, глубокого цвета и окружающего звука 7.1

Поддержка PCI Express 2.0

Создано для новой архитектуры шины PCI Express 2.0 для высочайших скоростей передачи данных в самых требовательных к полосе пропускания играх и 3D приложениях с поддержкой обратной совместимости с современными PCI Express материнскими платами.

Поддержка Microsoft® DirectX® 10.1

DirectX 10.1 с поддержкой Шейдерной Модели 4.1.

Оптимизация и поддержка OpenGL® 3.0

Гарантирует первосортную совместимость и производительность для OpenGL приложений.

Спецификация

Поддерживаемые дисплеи:
Максимальное разрешение цифрового монитора 2560x1600
Максимальное VGA разрешение 2048x1536
Стандартные разъемы монитора DVI, VGA, HDMI
Поддержка нескольких мониторов
HDCP
HDMI как заглушка (DVI-HDMI или DP-HDMI)
Аудио вход для HDMI внутренний
Стандартные размеры видеокарты:
Высота 4.376 inches (111 mm)
Длина 6.6 inches (168mm)
Ширина одинарный слот
Температура и мощность:
Максимальная температура GPU (в C)
Максимальная мощность видеокарты (Вт)
Минимальные системные требования по питанию (Вт)

2.2.5 Жёсткий диск.

Накопитель на жёстких магнитных дисках или НЖМД - устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Используемые интерфейсы: ATA (IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, USB, SDIO и Fibre Channel.

УСТРОЙСТВО

Жёсткий диск состоит из гермозоны и блока электроники (Рис.14).

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок - пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа, марганца и других металлов.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (3600, 4200, 5400, 5900, 7200, 9600, 10 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трехфазный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенные звездой с отводом посередине, а ротор - постоянный секционный магнит. Для обеспечения малого биения на высоких оборотах в двигателе используются гидродинамические подшипники.

Устройство позиционирования головок состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки на подвижном блоке головок

.Блок электроники . в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood) - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом. Рисунок 14.

Схема устройства НЖМД.(рис14)

Так как системная плата поддерживает интерфейс Serial ATA, был выбран жёсткий диск ST3160316AS ёмкостью 160 Гб, скоростью вращения шпинделя 7200 обор./мин., ёмкостью буфера памяти 8 Мб. (Рисунок. 15). Ёмкости 160Гб достаточно для работы в учебной лаборатории.


Рисунок 15 HDD ST3160316AS

2.2.6 Устройство оптического хранения данных.

Оптический привод - электрическое устройство для считывания и воз-

можно записи информации с оптических носителей (CD-ROM, DVD-ROM).

Существуют следующие типы приводов:

· привод CD-ROM (CD-привод);

· привод DVD-ROM (DVD-привод);

· привод HD DVD;

· привод BD-ROM;

· привод GD-ROM;

Рабочие станции учеников не оборудованы оптическими приводами, а для преподавателей был выбран CD/DVD – привод NEC DV-5800D.

2.2.7 Корпус и блок питания

Блок питания (БП) - устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети. Чаще всего блоки питания преобразуют переменный ток сети 220 В частотой 50 Гц (для России, в других странах используют иные уровни и частоты) в заданный постоянный ток.

Классическим блоком питания является трансформаторный БП . В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ, стабилизаторы напряжения и тока.

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на транс- форматор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки).

В настоящее время используется в основном два стандарта корпусов. Это АТХ и ВТХ, так они являются наиболее перспективными на сегодняшний день.

Главная особенность стандарта АТХ (Рис.17) состоит в том, что вентилятор расположен на стенке корпуса блока питания, которая обращена внутрь компьютера, и поток воздуха прогоняется вдоль системной платы, поступая извне. Поток воздуха в блоке АТХ направляется на компоненты платы, которые выделяют больше всего тепла (процессор, модули памяти и платы расширения).

Во всех современных процессорах устанавливается активный теплоотвод, который представляет собой маленький вентилятор, установленный на процессоре для его охлаждения. Блок питания модели АТХ берет воздух извне и создает в корпусе избыточное давление, тогда как в корпусах других систем давление понижено. Направление воздушного потока в обратную сторону позволило значительно улучшить охлаждение процессора и других компонентов системы. При таком направлении воздуха компоненты внутри системного блока меньше подвержены пыли.

Рисунок 16. Корпус ATX.

На ряду с ATX существует стандарт ВТХ (Рис.18). Внешне системная плата ВТХ выглядит почти как зеркальное отражение АТХ - платы благодаря чему все платы PCI и PCI Express, в том числе графические адаптеры, оказываются установленными микросхемами вверх, что уже само по себе улучшает ситуацию с охлаждением.

Но еще более важное достоинство ВТХ - новая схема охлаждения процессора: теперь он расположен на переднем краю платы, причем развернут под 45° к нему. При сборке компьютера на процессор устанавливается не привычное охлаждающее устройство, а так называемый модуль охлаждения (Thermal Module), состоящий из вентилятора, радиатора и объединяющего их в единое целое короба. В результате радиатор процессора обдувается холодным воздухом, забираемым вентилятором от наружной стенки компьютера.

Разворот процессора на 45° решает сразу две проблемы: во-первых, уменьшается сопротивление процессорного гнезда набегающему потоку воздуха; во-вторых перед гнездом по его бокам располагаются элементы VRM, которые при такой схеме также охлаждаются непосредственно потоком холодного забортного воздуха.

Системная плата располагается не у нижней кромки охлаждающего модуля, а чуть выше, благодаря чему часть воздушного потока проходит под платой, в первую очередь транзисторов VRM.

Рисунок 17. Корпус BTX.

Не смотря на то, что стандарт ВТХ имеет свои существенные преимущества, для учебной лаборатории выбраны корпуса стандарта АТХ, так как данный стандарт уже давно зарекомендовал себя и широко распространен на рынке компьютерных комплектующих.

Был выбран корпус Pangu Simple S1602BS ATX MidiTower, Black-Silve С установленным дополнительным клером (Рис.18).

Рисунок 18. Корпус Pangu Simple S1602BS ATX MidiTower, Black-Silve

Классический кейс стандарта ATX с блоком питания Pangu S380.
Отличительной чертой компьютерных корпусов серии Simple является невысокая цена.
Корпус оборудован блоком питания достаточной мощностью для офисного и домашнего компьютера не высокой производительности.
Серия Simple - отличный выбор для недорогих компьютеров, оборудованных PCI-E видеокартой средней производительности.
Блок питания оснащен разъемами дополнительного питания 8pin 12V и 6pin PCI-E для видеокарты.

Тип кейса – Middle Tower

Отсеки для накопителей:

5,25” - 3 шт.

5.25” (внутренний) - 1шт.

3.5” (внешний) - 1шт.

3.5” (внутренний) - 4шт.

Цвет - Черный/Серебристый

Материалы:

o металл (SGCC 0.45mm)

o высококачественный пластик

Материнские платы - ATX / Micro-ATX

Стандарт блока питания – ATX

I / O ...

2.2.8 Монитор

Монитор - универсальное устройство визуального отображения всех видов информации состоящее из дисплея и устройств предназначенное для вывода текстовой, графической и видео информации на дисплей.

В настоящее время в основном используются 2 типа мониторов: ЭЛТ- мониторы и ЖК-мониторы.

ЭЛТ-мониторы . Самым важным элементом монитора является кинескоп, называемый также электронно- лучевой трубкой. Кинескоп состоит из герме- тичной стеклянной трубки, внутри которой находится вакуум. Один из концов трубки узкий и длинный - это горловина, а другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором.

ЖК-монитор - плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Многоцветное изображение формируется с помощью RGB-триад.

Каждый пиксель ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Важнейшие характеристики ЖК-мониторов:

Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией.

Размер точки : расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.

Соотношение сторон экрана (формат ): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.

Видимая диагональ : размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.

Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

Время отклика : минимальное время, необходимое пикселю для изменения своей яркости. Методы измерения неоднозначны.

Угол обзора : угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.

Тип матрицы : технология, по которой изготовлен ЖК-дисплей.

Входы : например, DVI, D-Sub, HDMI и т.п.

Для компьютеров в учебной лаборатории, с учётом цвета корпуса системного блока, подобран монитор LG L1742SE-BF (Рис.19).

Рисунок 19. Монитор LG L1742SE-BF.

· Параметры монитора:

· Цвета, использованные в оформлении: Чёрный;

· Диагональ: 17");

· Точка LCD-матрицы: 0.294 мм;

· Яркость LCD-матрицы: 250 кд/м2;

· Контрастность LCD-матрицы: 2000:1 - статическая, 50000:1 (ACM -adaptive contrast management);

· Поверхность экрана монитора: Матовая;

· Время отклика: 5 мс; Формат LCD-матрицы: 5:4;

· Разрешение LCD-матрицы: 1280 x 1024;

· Угол обзора LCD-матрицы: 160° по горизонтали, 160° по вертикали при CR > 10:1;

· Интерфейс: VGA (15-пиновый коннектор D-sub), ;

· Блок питания монитора: Встроенный; Потребление энергии: 38.5 Вт - максимальное, 27.3 Вт - в режиме Energy Star, 1.5 Вт - в режиме ожидания;

· Размеры (ширина х высота х глубина): 408 x 406.8 x 180.4 мм; Вес: 3.91 кг.

2.2.9 Устройства ввода.

Устройства ввода - приборы для занесения (ввода) данных в компьютер во время его работы. Основными устройствами ввода информации от пользователя в компьютер являются мышь и клавиатура.

Клавиатура . Стандартная компьютерная клавиатура, также называемая клавиатурой PC/AT или AT-клавиатурой, имеет 101 или 102 клавиши. Расположение клавиш на AT-клавиатуре подчиняется единой общепринятой схеме, спроектированной в расчёте на английский алфавит.

По своему назначению клавиши на клавиатуре делятся на шесть групп:

· функциональные;

· алфавитно-цифровые;

· управления курсором;

· цифровая панель;

· специализированные;

· модификаторы.

Двенадцать функциональных клавиш расположены в самом верхнем ряду клавиатуры. Ниже располагается блок алфавитно-цифровых клавиш. Правее этого блока находятся клавиши управления курсором, а с самого правого края клавиатуры- цифровая панель.

Многие современные компьютерные клавиатуры, помимо стандартного набора из ста четырёх клавиш, снабжаются дополнительными клавишами (как правило, другого размера и формы), которые предназначены для упрощённого управления некоторыми основными функциями компьютера (в основном мультимедийных). Такие клавиатуры называются «мультимедийными клавиатурами».

Мышь воспринимает своё перемещение в рабочей плоскости (обычно - на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения.

· Датчики перемещения:

· Прямой привод;

· Шаровой привод;

· Оптические мыши первого поколения;

· Оптические мыши второго поколения;

· Лазерные мыши;

· Индукционные мыши;

· Гироскопические мыши.

В настоящее время для подключения клавиатуры и мыши используются интерфейсы: PS/2 и USB.

Для рабочих станций в учебных лабораториях были выбраны стандартная клавиатура с дополнительными мультимедийными возможностей Genius KB-200

Ergo (PS/2, 104 клавиши, влагозащита, подставка под запястья) (Рис.20) и лызерная

мышь Genius NetScroll 100 Optical USB (USB, 3 клавиши, включая колёсико-клавишу) (Рис.21).


Рисунок 20. Клавиатура Genius KB-200 Ergo

Рисунок 21. Мышь Genius NetScroll 100 Optical USB

2.3.1 Печатающие устройства.

Принтер - устройство печати цифровой информации на твёрдый носитель,обычно на бумагу. Относится к терминальным устройствам компьютера.

Процесс печати называется вывод на печать, а получившийся документ - распечатка или твёрдая копия.

Принтеры бывают струйные, лазерные, матричные и сублимационные, а по цвету печати - чёрно-белые (монохромные) и цветные.

Лазерные принтеры . По поверхности фотобарабана коротроном (скоро троном) заряда, либо валом заряда равномерно распределяется статический заряд, после этого светодиодным лазером (либо светодиодной линейкой) на фотобарабане снимается заряд, - тем самым на поверхность барабана помещается скрытое изображение. Далее на фотобарабан наносится тонер. Тонер притягивается к разряженным участкам поверхности фотобарабана, сохранившей скрытое изображение. После этого фотобарабан прокатывается по бумаге, и тонер переносится на бумагу коротроном переноса, либо валом переноса. После этого бумага проходит через блок термозакрепления для фиксации тонера, а фотобарабан очищается от остатков тонера и разряжается в узле очистки.

Струйные принтеры . Принцип действия струйных принтеров похож на матричные принтеры тем, что изображение на носителе формируется из точек. Но вместо головок с иголками в струйных принтерах используется матрица, печатающая жидкими красителями.

Сублимационные принтеры . Термосублимация - это быстрый нагрев красителя, когда минуется жидкая фаза. Из твёрдого красителя сразу образуется пар. Чем меньше порция, тем больше фотографическая широта (динамический диапазон) цветопередачи. Пигмент каждого из основных цветов, а их может быть три или четыре, находится на отдельной (или на общей многослойной) тонкой лавсановой ленте. Печать окончательного цвета происходит в несколько проходов: каждая лента последовательно протягивается под плотно прижатой термоголовкой, состоящей из множества термоэлементов. Эти последние, нагреваясь, возгоняют краситель. Точки, благодаря малому расстоянию между головкой и носителем, стабильно позиционируются и получаются весьма малого размера.

Матричные принтеры . Изображение формируется печатающей головкой, которая состоит из набора иголок (игольчатая матрица), приводимых в действие электромагнитами. Головка передвигается построчно вдоль листа, при этом иголки ударяют по бумаге через красящую ленту, формируя точечное изображение.

2.3.2 Сканеры.

Сканер - устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием.

Бывают ручные, рулонные, планшетные и проекционные сканеры. Разновидностью проекционных сканеров являются слайд-сканеры, предназначенные для сканирования фотопленок. В высококачественной полиграфии используются барабанные сканеры, в которых в качестве светочувствительного элемента используется фотоэлектронный умножитель (ФЭУ).

Принцип работы однопроходного планшетного сканера состоит в том, что вдоль сканируемого изображения, расположенного на прозрачном неподвижном стекле, движется сканирующая каретка с источником света. Отраженный свет через оптическую систему сканера (состоящую из объектива и зеркал или призмы) попадает на три расположенных параллельно друг другу фоточувствительных полупроводниковых элемента на основе ПЗС, каждый из которых принимает информацию о компонентах изображения.

Для учебной лаборатории выбрано многофункциональное устройство (МФУ)

Canon i-SENSYS MF4410 (Рис.22).

Преимущества МФУ:

· экономия пространства;

· цена. МФУ принтер-копир-сканер стоит намного дешевле, чем все эти

устройства, приобретенные отдельно;

· возможность проделать весь спектр работ на одном универсальном

сетевом устройстве;

· удобство обслуживания;


Рисунок 22. МФУ Canon i-SENSYS MF4410 .

Общие параметры:

- Позиционирование Печать документов

- Объем памяти (Стандарт) (Мб) 64

- Тип печати Лазерная

- Цветная печать Нет

- Типы печатных носителей Глянцевая бумага, матовая бумага, конверты

- Максимальный формат печати А4

- Разрешение печати 600 x 600

- Тип картриджа 728

- Наличие двусторонней печати Нет

- Печать без полей Нет

- Скорость печати До 23 стр./мин

- Прямая печать с цифровой фотокамеры

- Тип сканера Планшетный

- Разрешение сканирования 9600 x 9600

- Коэффициент масштабирования 25–400%

- Функции факса Нет

- Интерфейс подключения USB

- Беспроводная связь Нет

- Потребляемая мощность Макс. 1220 Вт

- Причина выбора Монохромный 5-строчный дисплей, доступная цена

3 Технология сборки, настройки компьютеров, установки программного обеспечения.

3.1 Расчет системы охлаждения.

Расчет охлаждения центрального процессора

Для стабильной работы процессора необходимо, чтобы его рабочая температура не поднималась выше определенного уровня, иначе при работе возможны сбои и зависания машины. Максимальная рабочая температура ядер процессора составляет 72.6°C, при расчете для надежности принимается допустимая температура равная 60°C. Оптимальная температура внутри системного блока 35°C. Необходимо выяснить, способен ли выбранный кулер обеспечить эффективное охлаждение корпуса процессора. Фундаментальной технической характеристикой кулера является термическое сопротивление относительно поверхности процессорного кристалла – величина, позволяющая оценить его эффективность в качестве охлаждающего устройства.

Термическое сопротивление процессора рассчитывается следующим образом:

Rt=(Tc-Ta)/W, (3.1)

где Rt - термическое сопротивление радиатора, °С/Вт;

Тс - температура процессора, которую необходимо достичь, применяя

кулер, °С;

Та - температура внутри компьютерного корпуса, °С;

W - тепловая мощность, рассеиваемая процессором, Вт.

Процессор Intel Core i3-560 рассеивает мощность 73Вт. Тогда термическое сопротивление радиатора будет равно:

Rt=(60-35)/73=0,34°C/W

В полученное значение для термосопротивления колера входит и термосопротивление теплового интерфейса. Для тонких слоев (0,05 мм и меньше), таких как термопаста термосопротивление составляет порядка 0,08 – 0,15 °C/W. Поэтому для обеспечения общего термосопротивление 0,15°C/W в случае применения качественной термопасты термосопротивление кулера не должно превышать:

Rt=0,34-0,08=0,26°C/W (3.2)

В случае применения кулера, поставляемого в упаковке с процессором (рис.17), термосопротивление которого равно 41°C/W , максимальная температура процессора будет равна:

Тс=W*(Rt+0,08)+Ta = 73*(0,41+0,08)+35=53,1 °С (3.3)

С учетом того, что максимальная температура ядер данного процессора составляет 72.6°C, был выбран этот кулер.

РАСЧЕТ ОХЛАЖДЕНИЯ КОРПУСА

Q = 1,76*P/(Ta-T0) (3.4)

где Р - полная тепловая мощность компьютерной системы;

Та - температура внутри системного корпуса;

То - температура «на входе» корпуса (температура в помещении);

Q - производительность (расход) корпусной системы охлаждения.

В таблице приведена тепловая мощность комплектующих элементов.

Таблица 3 Тепловая мощность комплектующих элементов.

Температура снаружи корпуса равна 25°С, желаемая температура внутри корпуса равна 35°. Тогда производительность вентилятора должна быть равна по

формуле (3.4):

Q = 1,76*208/(35-25) = 37 CFM

Реальная производительность вентилятора в конкретных эксплуатационных условиях зависит от системного импеданса, который выражается соотношением:

Р = k*Qn (3.5)

где к - системная константа,

Q - производительность вентилятора,

n - турбулентный фактор (1 <= n <=2, n = 1 при ламинарном режиме течения потока, п = 2 при турбулентном течении потока),

Р - системный импеданс.

Таблица 4Ориентировочные значения разменной константы k.


МСЗ - малая степень заполнения корпуса (заняты слот AGP, 1 слотРС!, 1 отсек для

устройств 5.25”. 2 отсека для устройств 3.5”).

ССЗ - средняя степень заполнения корпуса (заняты слот AGP, 2-3 слота PCI или других шин,

2-3 отсека для устройств 5.25”, 2 отсека для устройств 3.5”).

ВСЗ - высокая степень заполнения корпуса (заняты слот AGP, не менее 4-5 слотов PCI или

других шин, 3-4 отсека для устройств 5.25”, все доступные отсеки для устройств 3.5”).

Значение этой константы можно варьировать в пределах ±5%, если литраж вашего корпуса немного больше или немного меньше опорных показателей.

Размерная системная константа выбирается из расчета общего объема корпуса < 40л и малой степени заполнения корпуса (1 слот PCI-E, 1 слот PCI, 1 отсек для устройств 5.25", 2 отсека для устройств 3.5"). Требуемое значение = 0,06

Блок питания корпуса стандартный, вентилятор работает на выдув, значит течение потока ламинарное. Турбулентный фактор = 1. Поскольку блок питания корпуса оснащен стандартным вентилятором со скоростью вращения 2500 об/мин, то его производительность берется равной 30 CFM. Тогда системный импеданс равен по формуле (3.5):

Р = 0,06*30 = 1,8 ттН2О

  1. Здравствуйте! Объясните пожалуйста разницу в пропускной способности между интерфейсом PCI Express 3.0 x16 и PCI Express 2.0 x16. Сейчас ещё есть в продаже материнские платы с интерфейсом PCI Express 2.0 x16. Я с ильно потеряю в производительности видюхи, если установлю новую видеокарту интерфейса PCI Express 3.0 на компьютер с материнской платой, где есть только разъём PCI-E 2.0? Думаю что потеряю, ведь суммарная скорость передачи данных у PCI Express 2.0 равна - 16 ГБ/с, а суммарная скорость передачи данных у PCI Express 3.0 в два раза больше - 32 ГБ/с.
  2. Привет! У меня компьютер с мощным, но уже не новым процессором Intel Core i7 2700K и материнской платой, на которой имеется разъём PCI Express 2.0. Скажите, если я куплю новую видеокарту интерфейса PCI Express 3.0, то эта видеокарта будет работать в два раза медленнее, чем если бы у меня была материнка с разъёмом PCI Express 3.0? То есть мне пора менять компьютер?
  3. Ответьте пожалуйста на такой вопрос. На моей материнской плате есть два разъёма: PCI Express 3.0 и PCI Express 2.0, но в разъём PCI Express 3.0 новая видеокарта PCI Express 3.0 не лезет, мешает радиатор южного моста. Если я установлю видеокарту PCI-E 3.0 в слот PCI-E 2.0, то моя видеокарта будет работать хуже, чем если бы она была установлена в слот PCI Express 3.0 ?
  4. Здравствуйте, хочу купить у приятеля за две тысячи рублей немного бывшую в употреблении материнскую плату. Три года назад он покупал её за 7000 рублей, но меня смущает то, что на ней слот для видеокарты интерфейса PCI-E 2.0, а видеокарта у меня PCI-E 3.0. Моя видеокарта на этой материнской плате будет работать на полную мощность или нет?

Разница в пропускной способности между интерфейсом PCI Express 3.0 x16 и PCI Express 2.0 x16

Привет друзья! На сегодняшний день в продаже можно встретить материнские платы с разъёмом для установки видеокарт PCI Express 2.0 x16, так и PCI Express 3.0 x16. Тоже самое можно сказать и о графических адаптерах, в продаже встречаются видеокарты с интерфейсом PCI-E 3.0, а также PCI-E 2.0. Если смотреть официальные характеристики интерфейсов PCI Express 3.0 x16 и PCI Express 2.0 x16, то вы узнаете, что суммарная скорость передачи данных у PCI Express 2.0 равна - 16 ГБ/с, а у PCI Express 3.0 она в два раза больше - 32 ГБ/с. Не буду углубляться в дебри специфики работы этих интерфейсов и просто скажу вам, что такая большая разница в скорости передачи данных видна лишь в теории, на практике же она очень небольшая. Если читать статьи на эту тему в интернете, то вы придёте к выводу, что современные видеокарты интерфейса PCI Express 3.0 работают с одинаковой скоростью в разъёмах PCI Express 3.0 x16 и PCI Express 2.0 x16 и разница в пропускной способности между PCI-E 3.0 x16 и PCI-E 2.0 x16 составляет всего 1-2% потери производительности видеокарты . То есть, всё равно в какой слот вы установите видеокарту, в PCI-E 3.0 или PCI-E 2.0, работать всё будет одинаково.

Но к сожалению все эти статьи написаны в 2013 и 2014 году и в то время не было таких игр, как Far Cry Primal, Battlefield 1 и других новинок, появившихся в 2016 году. Также в 2016 году увидело свет семейство графических процессоров NVIDIA 10-ой серии, к примеру видеокарты GeForce GTX 1050 и GeForce GTX 1050 Ti и даже GTX 1060. Мои эксперименты с новыми играми и новыми видеокартами показали, что преимущество интерфейса PCI-E 3.0 над PCI-E 2.0 уже далеко не 1-2%, а в среднем 6-7%. Что интересно, если видеокарта ниже классом, чем GeForce GTX 1050 , то процент меньше (2-3 %) , а если наоборот, то больше - 9-13%.

Итак, в своём эксперименте я использовал видеокарту GeForce GTX 1050 интерфейса PCI-E 3.0 и материнскую плату с разъёмами PCI Express 3.0 x16 и PCI Express 2.0 x16.

Н астройки графики в играх везде максимальные.

  1. Игра FAR CRY PRIMAL. Интерфейс PCI-E 3.0 показал преимущество над PCI-E 2.0, так как всегда выше на 4-5 кадров, что в процентом соотношении примерно 4 % %.
  2. Игра Battlefield 1.Отрыв PCI-E 3.0 от PCI-E 2.0 составил 8-10 кадров , что в процентом соотношении примерно 9 %.
  3. Rise of the Tomb Raider. Преимущество PCI-E 3.0 составляет в среднем 9- 10 fps или 9 %.
  4. Ведьмак. Преимущество PCI-E 3.0 составил 3 %.
  5. Grand Theft Auto V. Преимущество PCI-E 3.0 составляет 5 fps или 5 %.

То есть, разница в пропускной способности между интерфейсом PCI-E 3.0 x16 и PCI-E 2.0 x16 всё же есть и не в пользу PCI-E 2.0. Поэтому я бы не стал покупать на данный момент материнскую плату с одним разъёмом PCI-E 2.0.

Один мой приятель купил бывшую в употреблении материнскую плату за три тысячи рублей. Да, когда-то она была наворочена и стоила около десяти тысяч рублей, на ней много разъёмов SATA III и USB 3.0, также 8 слотов для оперативки, она поддерживает технологию RAID и др, но построена она на устаревшем чипсете и слот для видеокарты на ней PCI Express 2.0! Моё мнение, лучше бы купил . Почему?

Вполне может так случиться, что уже через год-два новейшие видеокарты будут работать только в разъёме PCI Express 3.0 x16 , а на вашей материнке будет морально-устаревший и уже неиспользуемый производителями разъём PCI Express 2.0 x16 . Вы купите новую видеокарту, а она откажется работать в старом разъёме. Лично я уже много раз сталкивался с тем, что видеокарта PCI-E 3.0 не запускалась на мат. плате с разъёмом PCI-E 2.0, и не помогало даже обновление БИОСа материнской платы. Также я имел дело с видеокартами PCI-E 2.0 x16, которые отказывались работать на старых материнских платах с интерфейсом PCI-E 1.0 x16, хотя везде пишут об обратной совместимости. Случаев, когда видеокарта PCI Express 3.0 x16 не заводилась на материнках с PCI Express 1.0 x16, ещё больше.

Ну и не забудьте о появлении уже в этом году интерфейса PCI Express 4.0. В этом случае устаревшим окажется уже PCI Express 3.0.

#PCI_Express

Последовательная шина PCI Express, разработанная Intel и ее партнерами, призвана заменить параллельнуrю шину PCI и ее расширенный и специализированный вариант AGP. Несмотря на похожие наименования, шины PCI и PCI Express имеют мало общего. Протокол параллельной передачи данных, используемый в PCI, накладывает ограничения на ширину полосы пропускания и частоту работы шины; последовательная передача данных, примененная в PCI Express, обеспечивает возможность масштабирования (в спецификациях описываются реализации PCI Express 1x, 2x, 4x, 8x, 16x и 32x). На данный момент актуальной является версия шины с индексом 3.0

PCI-E 3.0

В ноябре 2010 года организация PCI-SIG, которая занимается стандартизацией технологии PCI Express, объявила о принятии спецификации PCIe Base 3.0.
Ключевым отличием от предыдущих двух версий PCIe можно считать измененную схему кодирования - теперь вместо 8 бит полезной информации из 10 бит переданной (8b/10b), по шине можно передать 128 бит полезной информации из 130 бит отправленной, т.е. коэффициент полезной нагрузки практически приблизился к 100%. Кроме того, увеличилась скорость передачи данных до 8 GT/s. Напомним, что это значение для PCIe 1.x составляло 2.5 GT/s, а для PCIe 2.x - 5 GT/s.
Все вышеперечисленные изменения привели к удвоению пропускной способности шины, по сравнению с шиной PCI-E 2.x. Это значит, что общая пропускная способность шины PCIe 3.0 в конфигурации 16x будет достигать 32 Гб/с. Первыми процессорами, которые были оснащены контроллером PCIe 3.0, стали процессоры Intel, созданные на основе микроархитектуры Ivy Bridge.

Несмотря на увеличившуюся более чем в три раза пропускную способность PCI-E 3.0 по сравнению с PCI-E 1.1, производительность одних и тех же видеокарт при использовании разных интерфейсов отличается не сильно. В таблице ниже представлены результаты тестов GeForce GTX 980 в разных тестах. Измерения проводились при одних графических настройках, в одной конфигурации Версия шины PCI-E изменялась в настройках BIOS.

PCI Express 3.0 по-прежнему сохраняет обратную совместимость с предыдущими версиями PCIe.

PCI-E 2.0

В 2007 году была принята новая спецификация шины PCI Express - 2.0, главное отличие которой заключается в удвоенной пропускной способности каждой линии передачи в каждом направлении, т.е. в случае с самой популярной версии PCI-E 16x, применяемой в видеокартах, пропускная способность составляет 8Гб/cек в каждом направлении. Первым чипсетом с поддержкой PCI-E 2.0 стал Intel X38.

PCI-E 2.0 полностью обратно совместим с PCI-E 1.0, т.е. все существующие устройства с интерфейсом PCI-E 1.0 могут работать в слотах PCI-E 2.0 и наоборот.

PCI-E 1.1

Первая версия интерфейса PCI Express, появившаяся в 2002 году. Обеспечивала пропускную способность 500 МБ/с на одну линию.

Сравнение скорости работы различных поколений PCI-E

Шина PCI работает на частоте 33 или 66 МГц и обеспечивает пропускную способность 133 или 266 Мб/сек, но эта пропускная способность делится между всеми устройствами PCI. Частота, на которой работает шина PCI Express 1.1 - 2.5 ГГц, что дает пропускную способность 2500 МГц / 10 * 8 = 250 * 8 Мбит/сек = 250 Мб/сек (из-за избыточного кодирования для передачи 8 бит данных реально передается 10 бит информации) для каждого устройства PCI Express 1.1 x1 в одном направлении. При наличии нескольких линий для вычисления пропускной способности величину 250 Мб/сек надо умножить на число линий и на 2, т.к. PCI Express является двунаправленной шиной.

Число линий PCI Express 1.1 Пропускная способность в одном направлении Суммарная пропускная способность
1 250 МБ/сек 500 МБ/сек
2 500 Мб/сек 1 ГБ/сек
4 1 ГБ/сек 2 ГБ/сек
8 2 ГБ/сек 4 ГБ/сек
16 4 ГБ/сек 8 ГБ/сек
32 8 ГБ/сек 16 ГБ/сек

Обратите внимание! Не следует пытаться установить плату PCI Express в слот PCI, и, наоборот, платы PCI не устанавливаются в слоты PCI Express. Тем не менее, плата PCI Express 1x, например, может быть установлена и, скорее всего, будет нормально функционировать в слоте PCI Express 8x или 16x, но не наоборот: плата PCI Express 16x в слот PCI Express 1x не влезет.

При смене одной только видеокарты обязательно нужно учитывать, что новые модели могут просто не подходить к вашей материнской плате, так как существует не просто несколько разных типов слотов расширения, но и несколько разных их версий (применительно и к AGP, и к PCI Express). Если вы не уверены в своих знаниях по этой теме, внимательно ознакомьтесь с разделом.

Как мы уже отметили выше, видеокарта вставляется в специальный разъем расширения на системной плате компьютера, через этот слот видеочип обменивается информацией с центральным процессором системы. На системных платах чаще всего есть слоты расширения одного-двух разных типов, отличающихся пропускной способностью, параметрами электропитания и другими характеристиками, и не все из них подходят для установки видеокарт. Важно знать имеющиеся в системе разъемы и покупать только ту видеокарту, которая им соответствует. Разные разъемы расширения несовместимы физически и логически, и видеокарта, предназначенная для одного типа, в другой не вставится и работать не будет.

К счастью, за прошедшее время успели кануть в лету не только слоты расширения ISA и VESA Local Bus (которые интересны лишь будущим археологам) и соответствующие им видеокарты, но практически исчезли и видеокарты для слотов PCI, а все AGP-модели безнадежно устарели. И все современные графические процессоры используют только один тип интерфейса — PCI Express. Ранее был широко распространён стандарт AGP, эти интерфейсы значительно отличаются друг от друга, в том числе пропускной способностью, предоставляемыми возможностями для питания видеокарты, а также другими менее важными характеристиками.

Лишь очень малая часть современных системных плат не имеет слотов PCI Express, и если ваша система настолько древняя, что использует AGP видеокарту, то заняться её апгрейдом не получится — нужно менять всю систему. Рассмотрим эти интерфейсы подробнее, именно эти слоты вам нужно искать на своих системных платах. Смотрите фотографии и сравнивайте.

AGP (Accelerated Graphics Port или Advanced Graphics Port) — это высокоскоростной интерфейс, основанный на спецификации PCI, но созданный специально для соединения видеокарт и системных плат. Шина AGP хотя и лучше подходит для видеоадаптеров по сравнению с PCI (не Express!), предоставляет прямую связь между центральным процессором и видеочипом, а также некоторые другие возможности, увеличивающие производительность в некоторых случаях, например, GART — возможность чтения текстур напрямую из оперативной памяти, без их копирования в видеопамять; более высокую тактовую частоту, упрощенные протоколы передачи данных и др., но этот тип слотов безнадёжно устарел и новых изделий с ним давно не выпускают.

Но всё же, для порядка упомянем и об этом типе. Спецификации AGP появились в 1997 году, тогда Intel выпустил первую версию описания, включающую две скорости: 1x и 2x. Во второй версии (2.0) появился AGP 4x, а в 3.0 — 8x. Рассмотрим все варианты подробнее:
AGP 1x — это 32-битный канал, работающий на частоте 66 МГц, с пропускной способностью 266 Мбайт/с, что в два раза выше полосы PCI (133 Мбайт/с, 33 МГц и 32 бит).
AGP 2x — 32-битный канал, работающий с удвоенной пропускной способностью 533 Мбайт/с на той же частоте 66 МГц за счет передачи данных по двум фронтам, аналогично DDR памяти (только для направления «к видеокарте»).
AGP 4x — такой же 32-битный канал, работающий на 66 МГц, но в результате дальнейших ухищрений была достигнута учетверенная «эффективная» частота 266 МГц, с максимальной пропускной способностью более 1 ГБ/с.
AGP 8x — дополнительные изменения в этой модификации позволили получить пропускную способность уже до 2,1 ГБ/с.

Видеокарты с интерфейсом AGP и соответствующие слоты на системных платах совместимы в определенных пределах. Видеокарты, рассчитанные на 1,5 В, не работают в слотах 3,3 В, и наоборот. Впрочем, существуют и универсальные разъемы, которые поддерживают оба типа плат. Видеокарты, рассчитанные на морально и физически устаревший слот AGP, давно не рассматриваются, поэтому чтобы узнать о старых AGP-системах, лучше будет ознакомиться со статьей:

PCI Express (PCIe или PCI-E, не путать с PCI-X), ранее известная как Arapahoe или 3GIO, отличается от PCI и AGP тем, что это последовательный, а не параллельный интерфейс, что позволило уменьшить число контактов и увеличить пропускную способность. PCIe — это лишь один из примеров перехода от параллельных шин к последовательным, вот другие примеры этого движения: HyperTransport, Serial ATA, USB и FireWire. Важное преимущество PCI Express в том, что он позволяет складывать несколько одиночных линий в один канал для увеличения пропускной способности. Многоканальность последовательного дизайна увеличивает гибкость, медленным устройствам можно выделять меньшее количество линий с малым числом контактов, а быстрым — большее.

Интерфейс PCIe 1.0 пропускает данные на скорости 250 Мбайт/с на одну линию, что почти вдвое превышает возможности обычных слотов PCI. Максимально поддерживаемое слотами PCI Express 1.0 количество линий — 32, что дает пропускную способность до 8 ГБ/с. А слот PCIe с восемью рабочими линиями примерно сопоставим по этому параметру с быстрейшей из версий AGP — 8x. Что еще больше впечатляет при учете возможности одновременной передачи в обоих направлениях на высокой скорости. Наиболее распространенные слоты PCI Express x1 дают пропускную способность одной линии (250 Мбайт/с) в каждом направлении, а PCI Express x16, который применяется для видеокарт и в котором сочетается 16 линий, обеспечивает пропускную способность до 4 ГБ/с в каждом направлении.

Несмотря на то, что соединение между двумя PCIe-устройствами иногда собирается из нескольких линий, все устройства поддерживают одиночную линию, как минимум, но опционально могут работать с большим их количеством. Физически, карты расширения PCIe входят и работают нормально в любых слотах с равным или большим количеством линий, так, карта PCI Express x1 будет спокойно работать в разъемах x4 и x16. Также, слот физически большего размера может работать с логически меньшим количеством линий (например, на вид обычный разъем x16, но разведены лишь 8 линий). В любом из приведенных вариантов PCIe сам выберет максимально возможный режим, и будет нормально работать.

Чаще всего для видеоадаптеров используются разъемы x16, но есть платы и с разъемами x1. А большая часть системных плат с двумя слотами PCI Express x16 работает в режиме x8 для создания SLI- и CrossFire-систем. Физически другие варианты слотов, такие как x4, для видеокарт не используются. Напоминаю, что всё это относится только к физическому уровню, попадаются и системные платы с физическими разъемами PCI-E x16, но в реальности с разведенными 8, 4 или даже 1 каналами. И любые видеокарты, рассчитанные на 16 каналов, работать в таких слотах будут, но с меньшей производительностью. Кстати, на фотографии выше показаны слоты x16, x4 и x1, а для сравнения оставлен и PCI (снизу).

Хотя разница в играх получается не такой уж и большой. Вот, например, обзор двух системных плат на нашем сайте, в котором исследуется разница в скорости трехмерных игр на двух системных платах, пара тестовых видеокарт в которых работает в режимах 8 каналов и 1 канала соответственно:

Интересующее нас сравнение — в конце статьи, обратите внимание на две последние таблицы. Как видите, разница при средних настройках весьма небольшая, но в тяжелых режимах начинает увеличиваться, причем, большая разница отмечена в случае менее мощной видеоплаты. Примите это к сведению.

PCI Express отличается не только пропускной способностью, но и новыми возможностями по энергопотреблению. Эта необходимость возникла потому, что по слоту AGP 8x (версия 3.0) можно передать лишь не более 40 с небольшим ватт суммарно, чего уже не хватало видеокартам тогдашних поколений, рассчитанных для AGP, на которых устанавливали по одному или двум стандартным четырехконтактным разъемам питания. По разъему PCI Express можно передавать до 75 Вт, а дополнительные 75 Вт получают по стандартному шестиконтактному разъему питания (см. последний раздел этой части). В последнее время появились видеокарты с двумя такими разъемами, что в сумме даёт до 225 Вт.

В дальнейшем группа PCI-SIG, которая занимается разработкой соответствующих стандартов, представила основные спецификации PCI Express 2.0. Вторая версия PCIe вдвое увеличила стандартную пропускную способность, с 2,5 Гбит/с до 5 Гбит/с, так что разъем x16 позволяет передавать данные на скорости до 8 ГБ/с в каждом направлении. При этом PCIe 2.0 совместим с PCIe 1.1, старые карты расширения обычно нормально работают в новых системных платах.

Спецификация PCIe 2.0 поддерживает скорости передачи как 2,5 Гбит/с, так и 5 Гбит/с, это сделано для обеспечения обратной совместимости с существующими решениями PCIe 1.0 и 1.1. Обратная совместимость PCI Express 2.0 позволяет использовать устаревшие решения с 2,5 Гбит/с в слотах 5,0 Гбит/с, которые просто будут в таком случае работать на меньшей скорости. А устройства, разработанные по спецификациям версии 2.0, могут поддерживать скорости 2,5 Гбит/с и/или 5 Гбит/с.

Хотя основное нововведение в PCI Express 2.0 — это удвоенная до 5 Гбит/с скорость, но это не единственное изменение, есть и другие модификации для увеличения гибкости, новые механизмы для программного управления скоростью соединений и т. п. Нас больше всего интересуют изменения, связанные с электропитанием устройств, так как требования видеокарт к питанию неуклонно растут. В PCI-SIG разработали новую спецификацию для обеспечения увеличивающегося энергопотребления графических карт, она расширяет текущие возможности энергоснабжения до 225/300 Вт на видеокарту. Для поддержки этой спецификации используется новый 2×4-штырьковый разъем питания, предназначенный для обеспечения питанием топовых моделей видеокарт.

Видеокарты и системные платы с поддержкой PCI Express 2.0 появились в широкой продаже уже в 2007 году, а теперь на рынке других и не встретить. Оба основных производителя видеочипов, AMD и NVIDIA, выпустили новые линейки GPU и видеокарт на их основе, поддерживающие увеличенную пропускную способность второй версии PCI Express и пользующиеся новыми возможностями по электрическому питанию для карт расширения. Все они обратно совместимы с системными платами, имеющими на борту слоты PCI Express 1.x, хотя в некоторых редких случаях наблюдается несовместимость, так что нужно быть осторожным.

Собственно, появление третьей версии PCIe было очевидным событием. В ноябре 2010 года спецификации третьей версии PCI Express окончательно утвердили. Хотя этот интерфейс обладает скоростью передачи 8 гигатранзакций/с вместо 5 Гт/с у версии 2.0, его пропускная способность снова возросла ровно вдвое по сравнению со стандартом PCI Express 2.0. Для этого применили иную схему кодирования пересылаемых по шине данных, но совместимость с предыдущими версиями PCI Express при этом сохранилась. Первые продукты версии PCI Express 3.0 были представлены летом 2011-го, а реальные устройства только-только начали появляться на рынке.

Среди производителей системных плат разгорелась целая война за право первым представить продукт с поддержкой PCI Express 3.0 (в основном, на базе чипсета Intel Z68), и соответствующие пресс-релизы представили сразу несколько компаний. Хотя на момент обновления путеводителя видеокарт с такой поддержкой просто нет, так что это просто неинтересно. К тому времени, когда поддержка PCIe 3.0 будет нужна, появятся совершенно иные платы. Скорее всего, это произойдёт не ранее 2012 года.

К слову, можно предполагать, что PCI Express 4.0 будет представлена в течение ещё нескольких следующих лет, и новая версия также будет иметь ещё раз удвоенную пропускную способность, востребованную к тому времени. Но это произойдёт совсем нескоро, и нам пока неинтересно.

External PCI Express

В 2007 году группа PCI-SIG, занимающаяся официальной стандартизацией решений PCI Express, объявила о принятии спецификации PCI Express External Cabling 1.0, описывающей стандарт передачи данных по внешнему интерфейсу PCI Express 1.1. Эта версия позволяет передавать данные со скоростью 2,5 Гбит/с, а следующая должна увеличить пропускную способность до 5 Гбит/с. В рамках стандарта представлены четыре внешних разъема: PCI Express x1, x4, x8 и x16. Старшие разъемы оснащены специальным язычком, облегчающим подключение.

Внешний вариант интерфейса PCI Express может использоваться не только для подключения внешних видеокарт, но и для внешних накопителей и других плат расширения. Максимальная рекомендованная длина кабеля при этом равна 10 метров, но её можно увеличить при помощи соединения кабелей через повторитель.

Теоретически, это могло облегчить жизнь любителей ноутбуков, когда при работе от батарей используется маломощное встроенное видеоядро, а при подключении к настольному монитору — мощная внешняя видеокарта. Значительно облегчается апгрейд подобных видеокарт, не нужно вскрывать корпус ПК. Производители могут делать совершенно новые системы охлаждения, не ограниченные особенностями карт расширения, да и с питанием должно быть меньше проблем — скорее всего, будут использоваться внешние блоки питания, рассчитанные специально на определенную видеокарту, их можно встроить в один внешний корпус с видеокартой, используя одну систему охлаждения. Может облегчиться сборка систем на нескольких видеокартах (SLI/CrossFire), да и с учётом постоянного роста популярности мобильных решений такие внешние PCI Express должны были завоевать определенную популярность.

Должны были, но не завоевали. По состоянию на осень 2011 года внешних вариантов видеокарт на рынке практически нет. Их круг ограничен устаревшими моделями видеочипов и узким выбором совместимых ноутбуков. К сожалению, дело внешних видеокарт дальше не пошло, и потихоньку заглохло. Не слышно уже даже победных рекламных заявлений от производителей ноутбуков… Возможно, мощностей современных мобильных видеокарт просто стало хватать даже для требовательных 3D-приложений, в т. ч. и многих игр.

Остаётся надежда на развитие внешних решений в перспективном интерфейсе для подключения периферийных устройств Thunderbolt, ранее известном как Light Peak. Его разработала корпорация Intel на базе технологии DisplayPort, и первые решения уже выпущены компанией Apple. Thunderbolt объединяет возможности DisplayPort и PCI Express и позволяет подключать внешние устройства. Впрочем, пока таковых просто не существует, хотя кабели уже есть:

В статье мы не трогаем устаревшие интерфейсы, абсолютное большинство современных видеоплат рассчитано на интерфейс PCI Express 2.0, поэтому при выборе видеокарты мы предлагаем рассматривать только его, все данные о AGP приведены лишь для справки. Новые платы используют интерфейс PCI Express 2.0, объединяющий скорость 16 линий PCI Express, что дает пропускную способность до 8 ГБ/с в каждом направлении, это в несколько раз больше по сравнению с той же характеристикой лучшего из AGP. Кроме того, PCI Express работает с такой скоростью в каждом из направлений, в отличие от AGP.

С другой стороны, продукты с поддержкой PCI-E 3.0 ещё толком не вышли, поэтому рассматривать их тоже не имеет особого смысла. Если речь идёт об апгрейде старой или покупке новой платы или одновременной смене системной и видеоплаты, то просто нужно приобретать платы с интерфейсом PCI Express 2.0, который будет вполне достаточен и наиболее распространен еще несколько лет, тем более что продукты разных версий PCI Express совместимы между собой.