Компьютеры Windows Интернет

Магнитные оптические электронные носители информации. Магнитные носители информации. Запись информации на магнитные носители. Принципы функционирования FMD ROM

Скорости и надежности современных рекордеров позавидует любой болид «Формулы-1». ComputerBild рассказывает, как данные попадают на CD, DVD и Blu-ray-диски.

Запись музыки и фильмов на оптические носители – процесс привычный, как использование магнитных кассет лет двадцать назад, только обходится намного дешевле. Чем же отличаются типы носителей и как на них записывается информация?

Штамповка и прожиг

При промышленном производ­стве дисков с музыкой, фильмами или играми запись данных на носитель осуществляется путем штамповки – этот процесс напоминает изготовление грампла­стинок. Информация на дисках сохраняется в виде крошечных углублений. Компьютерные и бытовые DVD-рекордеры выполняют эту задачу иначе – они используют лазерный луч.

Первыми записываемыми оптическими носителями стали CD-R с возможностью однократной запи­си. При сохранении данных на такие диски лазерный луч нагревает состоящий из красителя рабочий слой болванки примерно до 250 °С, что вызывает химиче­скую реакцию. В месте нагрева лазером образуются темные не­прозрачные пятна. Отсюда и происходит слово «прожиг».

Аналогичным образом осуществляется перенос данных на DVD с возможностью однократной записи. А вот на поверхности перезаписываемых CD, DVD и Blu-ray-дисков темных точек не образуется. Рабочий слой этих накопителей представляет собой не краситель, а специальный сплав. При нагреве лазером примерно до 600 °С он переходит из кристаллического состояния в аморфное. Подвергнутые воздействию лазера участки имеют более темный цвет, а значит, и другие отражающие свойства.

Носители информации

Болванки, предназначенные для записи в домашних условиях, имеют такую же толщину (1,2 мм) и такой же диаметр (12 или 8 см), как и диски, запись данных на которые осуществляется промышленным способом. Оптические носители имеют многослойную структуру.

Подложка. Основа для дисков, которая изготавливается из поликарбоната, – это прозрачный, бесцветный и довольно устойчивый к внешним воздействиям полимерный материал.

Рабочий слой. У записываемых CD и DVD он состоит из органического красителя, а у перезаписываемых CD, DVD (RW, RAM) и Blu-ray-дисков образован специальным сплавом, способным изменять фазовое состояние. Рабочий слой с двух сторон окружен изолирующим веществом.

Отражающий слой. Для создания слоя, от которого отражается луч лазера, используются алюминий, серебро или золото.

Защитный слой. Им снабжены только CD и Blu-ray-диски. Он представляет собой твердое лаковое покрытие.

Этикетка. Сверху на диск наносится слой лака – так называемая этикетка. Этот слой способен впитывать влагу, благодаря чему чернила, которые оказываются на поверхности носителя во время печати, быстро высыхают.

Различия между CD, DVD и Blu-ray-дисками

Эти носители имеют разные характеристики. В первую очередь – разную емкость. Blu-ray-диск способен вместить до 25 Гб данных, на DVD можно сохранить в 5 раз меньше информации, на CD – в 35 раз меньше. Для чтения и записи данных в Blu-ray-приводах используется синий лазер. Длина его волны примерно в 1,5 раза меньше, чем в DVD- и CD-приводах красного лазера. Это позволяет записать на равную по площади поверхность диска значительно больший объем информации.

Форматы носителей

В настоящее время на рынке представлены следующие типы оптических носителей.

CD-R. Записываемые CD способны вместить до 700 Мб информации. Существуют также диски ем­костью 800 Мб, однако они поддерживаются далеко не всеми рекордерами и бытовыми плеерами. На восьмисантиметровые miniCD можно записать 210 Мб данных.

CD-RW. Перезаписываемые носители обладают такой же емко­стью, что и CD-R.

DVD-R/DVD+R. Записываемые DVD вмещают 4,7 Гб информации. miniDVD диаметром 8 см – 1,4 Гб.

DVD-R DL/DVD+R DL. Приставка DL означает Dual Layer (DVD-R) или Double Layer (DVD+R), что соответствует двухслойному носителю. Емкость – 8,5 Гб. На восьмисантиметровый диск помещается до 2,6 Гб.

DVD-RW/DVD+RW. Однослойные носители этого типа способны выдержать несколько сотен циклов записи. Как и у DVD с возможностью однократной записи, емкость перезаписываемых ди­сков – 4,7 Гб, а дисков диаметром 8 см – около 1,4 Гб.

DVD-RAM. Эти носители обладают такой же емкостью, как и однослойные DVD. Существуют и двухслойные диски, которые вмещают в два раза больше информации. DVD-RAM выдерживают до 100 тысяч циклов записи, однако работают с этими дисками лишь немногие DVD-плееры. Запись данных осуществляется не на спиралевидную дорожку, а секторами на кольцевые дорожки, как на пластины жесткого диска. Метки, определяющие границы секторов, хорошо видны на поверхности DVD-RAM – по их наличию легко отличить этот тип носителей от других.

BD-R/BD-R DL . Сокращение, которое используется для обозначения записываемых Blu-ray-дисков. Носители BD-R имеют один рабочий слой, вмещающий 25 Гб данных. BD-R DL снабжены двумя рабочими слоями, поэтому их емкость в 2 раза выше.

BD-RE/BD-RE DL. Перезаписываемые Blu-ray-диски рассчитаны на 1000 циклов записи. На них можно разместить столько же данных, как и на неперезаписываемые носители.

«Плюс» и «минус»

Наличие «плюсовых» и «минусовых» носителей – следствие давней войны форматов. Вначале представители компьютерной индустрии делали ставку на «плюсовой» формат, а производители бытовой электроники продвигали «минусовой» в качестве стандарта записываемых DVD. Со­временные рекордеры и плееры поддерживают оба формата.

Ни один из них не обладает явными преимуществами по сравнению с другим. При изготовлении носителей обоих типов используются одинаковые материалы. Поэтому между «плюсовыми» и «минусовыми» дисками одного производителя существенных различий нет.

Качество записи

Качество записи носителей одного формата может значительно различаться. Многое зависит от используемой модели рекордера. Большую роль играет и скорость записи: чем она ниже, тем меньше количество ошибок и выше качество.

Совместимость рекордеров и носителей

Не каждый рекордер способен осуществлять запись на диски всех без исключения форматов. Существуют определенные ограничения.

CD-рекордеры. Не могут работать с DVD и Blu-ray-дисками.

DVD-рекордеры. Записывают CD и DVD, но не поддерживают формат Blu-ray.

Blu-ray-рекордеры. Осуществляют запись как на Blu-ray, так и на любые CD и DVD.

Подписи на дисках

Носитель, на котором размещена информация, лучше сразу же подписать, чтобы не перепутать впо­следствии. Сделать это можно разными способами.

Болванки с возможностью печати. Верхняя сторона этих дисков покрыта лаком. На такой поверхности можно осуществлять печать текста и изображений, используя струйные прин­теры и МФУ, оснащенные специальным лотком. По цене диски не отличаются от обычных.

Подпись с помощью рекордера. Поддержка рекордером технологии LightScribe или Labelflash по­зволяет наносить одноцветные изображения и текст на поверхность специально предназначенных для этого носителей. Правда, процесс может занимать до 30 мин., а стоимость дисков Light­Scribe примерно в два раза превышает стоимость обычных болванок. Носители с поддержкой La­bel­flash обойдутся еще дороже.

Новая технология LabelTag. Разработана производителем рекордеров Lite-On и предполагает нанесение текста на рабочую поверхность диска. Благодаря этому необходимость использовать специальные носители исчезает. Однако на диске расходуется место, поскольку текст наносится непо­средственно на дорожку. Да и надпись хорошо читается, только если участки с текстом ярко контрастируют с пустыми фрагментами.

Подпись, сделанная вручную. Для этого нужно приобрести специальные маркеры с мягким, закругленным на конце стержнем и не содержащими растворителей чернилами. Другие маркеры могут привести к разъеданию поверхности диска и образованию царапин.

Использование наклеек. Распечатать наклейки можно на любом принтере. Однако приклеивать их не рекомендуется, так как это часто приводит к повреждению поверхности диска, а значит, и к потере данных. Может случи­ться так, что этикетка оторвется во время воспроизведения диска. В этом случае вероятно повреждение оптического привода.

Cрок хранения данных

Производители дисков зачастую указывают срок сохранности данных на носителях 30 лет и более. Однако такая продолжительность возможна только при идеальных условиях хранения – в сухом, прохладном и темном месте. Качество записи должно быть высоким.

При частом использовании срок службы самостоятельно записанных дисков значительно уменьшается. При воспроизведении носители подвергаются воздей­ствию высоких температур и механическим нагрузкам. Потеря данных также может быть вызвана царапинами или загрязнением.

Перенос информации на диск

У всех оптических носителей, за исключением DVD-RAM, имеется спиралевидная дорожка, которая идет от центра диска к внешнему краю. На эту дорожку лазерным лучом записывается информация. При прожиге луч лазера образует на отражающем слое крошечные пятна – питы (от англ. pit – яма). Области, которые не подвергались воздействию лазера, называются лэнды (от англ. land – поверхность). В переводе на язык двоичной си­стемы хранения данных питу соответствует 0, а лэнду – 1.

При воспроизведении диска информация считывается с помощью лазера. Благодаря различной отражающей способности питов и лэндов, привод распознает темные и светлые участки диска. Таким образом с носителя считывается последовательность нулей и единиц, из которых состоят все без исключения физические файлы.

С развитием технологий происходило постепенное уменьшение длины волны лазерного луча, использу­емого в рекордерах, что позволило значительно повысить точность фокусировки. Дорожка стала уже, питы – меньше, а на равную по площади область диска помещается больший объем данных. Чем короче длина волны, тем меньше расстояние между рабочим слоем и лазером.

Производство носителей

На примере DVD ComputerBild рассказывает, как производятся оптические носители и чем отличается производство других типов дисков.

1. Для отливки пластиковой подложки поликарбонат, разогретый до 350 °С, подается в форму методом литья под давлением. На поверхности основы с помощью матрицы создается микроскопиче­ская спиральная дорожка в виде желобка (Pre-Groove). На эту дорожку не только записываются данные – в нее также помещен сигнал для синхронизации привода шпинделя рекордера. После охлаждения подложки до 60 °С делается центральное отверстие, затем температура снижается до 25 °С и начинается дальнейшая обработка. DVD обычно состоят из двух по­ликарбонатных слоев толщиной 0,6 мм каждый. У однослойных записываемых DVD дальнейшей обработке подвергается только один из слоев, как описано в шагах 2–3, а у двухслойных DVD – оба. CD и Blu-ray-диски имеют лишь один слой толщиной 1,2 мм.

2. Рабочий слой записываемых CD и DVD создается методом центрифугирования. С помощью дозатора краситель впрыскивается на поверхность вращающегося с постоянной скоростью диска в области центрального отверстия и равномерно распределяется по поверхности носителя.

3. Отражающий слой наносится на диск методом ионно-плазменного напыления. В вакуумной камере алюминиевая, се­ребряная или золотая пластина бомбардируется заряженными ионами, которые выбивают из нее атомы металла – он остается на поверхности рабочего слоя болванки. У перезаписываемых CD, DVD и Blu-ray-дисков все рабочие и отражающие слои создаются с помощью ионно-плазменного напыления. В четырех камерах на диск последовательно наносится первый слой изолятора, рабочий слой, второй слой изолятора и отражающий слой. При производстве Blu-ray-дисков эти операции выполняются в обратной последовательности.

4. Две поликарбонатные основы склеиваются вместе. У CD и Blu-ray-дисков вместо второй основы наносится лаковое покрытие, которое сушится под ультрафиолетовой лампой. Лаковое по­крытие Bly-ray-дисков отличается особой прочностью, в то время как DVD в защитном слое лака не нуждаются.

5. На последнем этапе болванки получают этикетку, а на диски с возможностью печати на принтере наносится впитывающий слой лака.

Самым первым носителем магнитной записи, который использовался в аппаратах Поульсена на рубеже 19-20 вв., была стальная проволока диаметром до 1 мм. В начале 20 столетия для этих целей использовалась также стальная катаная лента. Тогда же (в 1906 г.) был выдан и первый патент на магнитный диск. Однако качественные характеристики всех этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км или около 100 кг проволоки.

Лишь со второй половины 1920-х гг., когда была изобретена порошковая магнитная лента, началось широкомасштабное применение магнитной записи. Первоначально магнитный порошок наносился на бумажную подложку, затем - на ацетилцеллюлозу, пока не началось применение в качестве подложки высокопрочного материала полиэтилентерефталата (лавсана). Совершенствовалось также и качество магнитного порошка. Стали использоваться, в частности, порошки оксида железа с добавкой кобальта, металлические магнитные порошки железа и его сплавов, что позволило в несколько раз увеличить плотность записи.

В 1963 г. фирмой Philips была разработана так называемая кассетная запись, позволившая применять очень тонкие магнитные ленты. В компакт-кассетах максимальная толщина ленты составляет всего 20 мкм при ширине 3,81 мм. В конце 1970-х гг. появились микрокассеты размером 50 х 33 х 8 мм, а в середине 1980-х гг. - пикокассеты - втрое меньше микрокассет.

С начала 1960-х гг. широкое применение получили магнитные диски - прежде всего в запоминающих устройствах ЭВМ. Магнитный диск - это алюминиевый или пластмассовый диск диаметром от 30 до 350 мм, покрытый магнитным порошковым рабочим слоем толщиной в несколько микрон. В дисководе, как и в магнитофоне, информация записывается с помощью магнитной головки, только не вдоль ленты, а на концентрических магнитных дорожках, расположенных на поверхности вращающегося диска, как правило, с двух сторон. Магнитные диски бывают жёсткими и гибкими, сменными и встроенными в персональный компьютер. Их основными характеристиками являются: информационная ёмкость, время доступа к информации и скорость считывания подряд.

Алюминиевые магнитные диски - жёсткие (винчестерские) несъёмные диски - в ЭВМ конструктивно объединены в едином блоке с дисководом. Они компонуются в пакеты (стопки) от 4 до 16 штук. Запись данных на жёсткий магнитный диск, также как и чтение, осуществляется на скорости до 7200 оборотов в минуту. Ёмкость диска достигает свыше 9 Гбайт. Эти носители предназначены для постоянного хранения информации, которая используется при работе с компьютером (системное программное обеспечение, пакеты прикладных программ и др.).

Гибкие пластмассовые магнитные диски (флоппи-диски, от англ. floppy - свободно висящий) изготавливаются из гибкого пластика (лавсана) и размещаются по одному в специальных пластиковых кассетах. Кассета с флоппи-диском называется дискетой. Наиболее распространены дискеты с флоппи-дисками диаметром 3,5 и 5,25 дюйма. Ёмкость одной дискеты составляет обычно от 1,0 до 2,0 Мбайт. Однако уже разработана 3,5-дюймовая дискета ёмкостью 120 Мбайт. Кроме того, выпускаются дискеты, предназначенные для работы в условиях повышенной запылённости и влажности.

Широкое применение, прежде всего в банковских системах, нашли так называемые пластиковые карты, представляющие собой устройства для магнитного способа хранения информации и управления данными. Они бывают двух типов: простые и интеллектуальные. В простых картах имеется лишь магнитная память, позволяющая заносить данные и изменять их. В интеллектуальных картах, которые иногда называют смарт-картами (от англ. smart -умный), кроме памяти, встроен ещё и микропроцессор. Он даёт возможность производить необходимые расчёты и делает пластиковые карты многофункциональными.

Следует заметить, что, кроме магнитного, существуют и другие способы записи информации на карту: графическая запись, эмбоссирование (механическое выдавливание), штрих-кодирование, а с 1981 г. - также и лазерная запись (на специальную лазерную карточку, позволяющую хранить большой объём информации, но пока очень дорогую).

Для записи звука в цифровых диктофонах используются, в частности, миникарты, имеющие подобие дискет с объёмом памяти 2 или 4 Мбайт и обеспечивающие запись в течение 1 часа.

В настоящее время материальные носители магнитной записи классифицируют:

по геометрической форме и размерам (форма ленты, диска, карты и т.д.);

по внутреннему строению носителей (два или несколько слоёв различных материалов);

по способу магнитной записи (носители для продольной и перпендикулярной записи);

по виду записываемого сигнала (для прямой записи аналоговых сигналов, для модуляционной записи, для цифровой записи).

Технологии и материальные носители магнитной записи постоянно совершенствуются. В частности, наблюдается тенденция к увеличению плотности записи информации на магнитных дисках при уменьшении его размеров и снижении среднего времени доступа к информации.

В природе естественным носителем информации является человеческая память. И все же с давних лет человек пользуется посторонними подсобными средствами для хранения информации, которые в начале были самыми примитивными (камнями, ветками, перьями, бусами).


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE \* MERGEFORMAT 2

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Крымский федеральный университет имени В.И. ВЕРНАДСКОГО»

ТАВРИЧЕСКАЯ АКАДЕМИЯ

ИСТОРИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА региональной истории и специальных дисциплин

Красненкова Анастасия Романовна

Студентка I курса

Дневного отделения (подпись студента)

МАГНИТНЫЕ И ОПТИЧЕСКИЕ НОСИТЕЛИ ИНФОРМАЦИИ И ВОЗМОЖНОСТЬ ИХ ИСПОЛЬЗОВАНИЯ В ПРАКТИКЕ ОРГАНИЗАЦИЙ

Курсовая работа

Научный руководитель –

доцент кафедры, кандидат

исторических наук (дата) (подпись) Т. Б. Назарчук

Симферополь 2015

Введение_________________________________________________________3

Глава 1. Способы хранения информации______________________4

1.1. Древнейшие способы хранения информации_________________________4

1.2. Изобретение современных носителей информации____________________8

1.3. Влияние типа носителя на долговечность и стоимость документа_______15

Глава 2. Характеристика магнитных и оптических носителей информации_______________________________________19

2.1 Материальные носители информации______________________________19

2.2 Оптические носители информации__________________________________21

Глава 3. Использование магнитных и оптических носителей информации_______________________________________24

3.1 Использование носителя в практике работы организаций_____________24

3.2 Использование магнитных и оптических носителей в практике работы организаций________________________________________________________25

Заключение_____________________________________________________29

Список используемых источников и литературы__________31

Введение

Актуальность

Информационное общество характеризуется многими чертами, одной из которых является то, что информация становиться важнейшим фактором развития общества.

Сохранение, развитие и рациональное использование документного ресурса имеют огромное значение для любого общества и государства.

Отличительной чертой сегодняшнего этапа развитие человека является представление информации не только в печатной и других аналоговых формах, но и электронной, цифровой форме, что позволяет принципиально иначе создавать, хранить, организовывать доступ и использовать электронные документы.

В природе естественным носителем информации является человеческая память. И все же с давних лет человек пользуется посторонними подсобными средствами для хранения информации, которые в начале были самыми примитивными (камнями, ветками, перьями, бусами). Историческими вехами на пути развития средств хранения информации явились создание письменности, изобретение сначала папируса, потом – пергамента и бумаги, а затем и книгопечатания. В наше же время количество материальных носителей значительно возросло. Одно осталось неизменным требования к хранению, равно как и объем хранимой информации с развитием человечества только увеличивается, а точное время, когда информация обесценится, как правило, не известна. Исходя из того общество стремиться всегда выбрать лучшие носители, чтобы сохранить важную информацию. Но так ли легко осуществить выбор материального носителя?

Цель работы дать характеристику магнитного и оптического документов, а также обосновать их использование в работе организаций.

Объект исследования: магнитный и оптический документы.

Предмет исследования: использование магнитного и оптического документов в работе организаций.


Глава 1. Способы хранения информации

1.1. Древнейшие способы хранения информации

Первыми носителями информации были стены пещер в эпоху палеолита. Сначала люди рисовали на стенах пещер, камнях и скалах, такие рисунки и надписи называются петроглифами. Самые древние наскальные изображения и петроглифы (от греч. petros - камень и glyphe - резьба) изображали животных, охоту и бытовые сцены. К числу самых древних изображений на стенах пещер эпохи палеолита относятся и оттиски рук человека, и беспорядочные переплетения волнистых линий, продавленных в сырой глине пальцами той же руки. Обращает внимание, какими живыми, яркими были изображения зверей в пещерах позднего периода древнего каменного века. Их создатели хорошо знали поведение животных, их повадки. Они замечали в их движениях такие чёрточки, которые ускользают от современного наблюдателя. Примечательно, что, изображая зверей, древние мастера использовали для моделировки их тел неровности скалы, впадины, выступы, имеющие сходство с очертаниями фигур. Изображение как бы ещё не отделилось от окружающего его пространства, не стало самостоятельным.

Люди древнего каменного века не знали орнамента. На изображениях животных и людей из кости иногда видны ритмично повторяющиеся штрихи или зигзаги, похожие на орнамент. Но, присмотревшись, видишь, что это - условное обозначение шерсти, птичьих перьев или волос. Как изображение животного «продолжает» скальный фон, так и эти похожие на орнамент мотивы ещё не стали самостоятельными, отделёнными от вещи условными фигурками, которые можно наносить на любую поверхность. Следует полагать, что самые старые носители информации служили не только простым украшением, наскальные рисунки предназначались для передачи информации или совмещали эти функции.

Одним из первых доступных материалов стала использоваться глина. Глина - материальный носитель знаков письма, который обладал достаточной прочностью (сохранность информации), к тому же был недорогим и легко доступным, а пластичность, удобство записи позволяла повысить эффективность записи, можно было без особого труда, ясно и отчетливо изображать знаки письма. Природный писчий материал был найден древнейшими обитателями Двуречья, жившими на самом юге этой страны - шумерийцами. Главным естественным богатством этого района была глина: местные жители строили из нее свои жилища, храмы богов, изготовляли из нее посуду, светильники, гробы. Согласно древнему шумерскому мифу даже человек был сотворен из глины. Запасы этого материала были практически неисчерпаемы. Поэтому в районе Южного Двуречья материальным носителем знаков письменности стали глиняные таблички, широко употреблявшиеся здесь уже в начале III тыс. до н. э.

Возможность эффективной записи способствует появлению письменности. Более пяти тысяч лет назад появляется (достижение шумерской цивилизации, территория современного Ирака) письменность на глине (уже не рисунки, а похожие на буквы значки и пиктограммы).

Глиняные таблетки стали материальной основой высоко развитой письменности. Во второй половине III тысячелетия до н. э. в шумерийской литературе были представлены самые разнообразные жанры: мифы и эпические сказания в стихах, гимны богам, поучения, басни о животных, пословицы и поговорки. Американскому шумерологу Сэмюелу Крамеру посчастливилось открыть древнейший в мире «библиотечный каталог», помещенный на табличке в 6,5 см длины и около 3,5 см ширины. Писец сумел на этой крохотной табличке написать названия 62 литературных произведений. «По крайней мере, 24 названия из этого каталога относятся к произведениям, которые частично или полностью дошли до нас», — пишет С.Я. Крамер.

Более доступный материал для письма был придуман в Древнем Риме. Это были специальные восковые таблички, которыми человечество пользовалось более 1500 лет. Готовились эти таблички из дерева или слоновой кости. От краев дощечки на расстоянии 1—2 см делали углубление на 0,5—1 см., а затем по всему периметру заполняли его воском. На дощечке писали, нанося на воск знаки острой металлической палочкой — стилусом, который был с одной стороны заостренным, а другой его конец имел форму лопатки и мог стирать надпись. Складывались такие восковые дощечки воском вовнутрь и соединялись по две (диптих) или три (триптих) штуки или по нескольку штук кожаным ремешком (полиптих) и получалась книжка, прообраз средневековых кодексов и дальний предок современных книг. В античном мире и Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму. Подобные вощеные таблички были и на Руси и назывались они церы.

В условиях жаркого климата записи на восковых дощечках были недолговечны, однако некоторые оригиналы восковых табличек сохранились до наших дней (например, с записями французских королей). Из русских цер сохранился так называемый Новгородский кодекс, датируемый XI в. – это полиптих, состоящий из четырех восковых страниц.

Огромным шагом вперед явилось употребление папируса, введенное древними египтянами. Наиболее древний папирусный свиток относится к XXV веку до н. э. Позднее греки и римляне переняли от египтян письмо на папирусе. Писали на нем при помощи специального пера.

Папирус - писчий материал получивший распространение в Египте и во всем Средиземноморье, для изготовления которого использовалось растение семейства осоковых.

Сырьем для изготовления папируса служил тростник, растущий в долине реки Нил. Стебли папируса очищали от коры, сердцевину разрезали вдоль на тонкие полоски. Получившиеся полоски раскладывали внахлёст на ровной поверхности. На них выкладывали под прямым углом ещё один слой полосок и помещали под большой гладкий камень, а потом оставляли под палящим солнцем. После сушки лист папируса шлифовали и выглаживали при помощи раковины или куска слоновой кости. Листы в окончательной форме имели вид длинных лент и потому сохранялись в свитках, а в более позднее время — соединялись в книги.

В античную эпоху папирус был основным писчим материалом во всём греко-римском мире. Производство папируса в Египте было весьма велико. И при всех своих хороших качествах папирус все же был непрочным материалом. Папирусные свитки не могли храниться более 200 лет. До наших дней сохранились папирусы только в Египте исключительно благодаря уникальному климату этой местности.

В качестве материального носителя информации папирус использовался не только в Древнем Египте, но и в других странах Средиземноморья, причем в Западной Европе – вплоть до XI века. А последним историческим документом, написанным на папирусе, стало послание папы римского в начале XX века.

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое — хорошо забытое старое». Люди начали производство материала для письма из кожи животных – пергамента. Пергамент постепенно вытеснял папирус. Достоинства нового носителя — высокая надёжность хранения информации (прочность, долговечность, не темнел, не пересыхал, не трескался, не ломался), многоразовость (например, в сохранившемся молитвеннике Х века учёные обнаружили несколько слоёв записей, сделанных вдоль и поперёк, стёртых и зачищенных, а с помощью рентгена там обнаружился древнейший трактат Архимеда). Книги на пергаменте — палимпсесты (от греческого языка παλίμψηστον — рукопись, писанная на пергаменте по смытому или соскобленному тексту).

Название материала происходит от города Пергам, где стали впервые изготавливать этот материал. С древности и до наших дней пергамент известен у евреев под названием «гвиль», как канонический материал для записи Синайского Откровения в рукописных свитках Торы. На более распространённом виде пергамента «клаф» писались также отрывки из Торы для тфил и мезуз. Для изготовления этих разновидностей пергамента используются исключительно шкуры кошерных видов животных.

Пергамент представляет собой недубленую выделанную кожу животных - овечью, телячью или козью.

По свидетельству греческого историка Ктесия в V в. до н. э. кожа уже в то время издавна употреблялась в качестве материала для письма у персов. Откуда она под именем «дифтера» перешла в Грецию, где наряду с папирусом употреблялись для письма обработанные овечьи и козьи шкуры.

Другим материалом растительного происхождения, использовавшимся, главным образом, в экваториальной зоне (в Центральной Америке с VIII века, на Гавайский островах) была тапа. Она изготавливалась бумажного шелковичного дерева, в частности, из лыка, луба. Лыко промывалось, очищалось от неровностей, затем отбивалось молотком, разглаживалось и просушивалось.

Древние германцы писали свои рунические тексты на буковых дощечках (Buchenholz), откуда и слово «Buch», книга. Знаки наносились процарапыванием (Writan), откуда и происходит английский глагол write, писать (одного корня с немецким ritzen, царапать).

Римляне в самую раннюю пору своей истории, когда письменность только входила у них в употребление, писали на древесном лыке (liber): этим же словом у них стала называться книга. Носители информации римского письма на этом материале не сохранились, но ближайшим аналогом могут, по-видимому, послужить берестяные грамоты.

Береста - широкое распространение с XII века

В поисках более практичных носителей информации люди пробовали писать на дереве, его коре, листьях, коже, металлах, кости. В странах с жарким климатом часто использовали высушенные и покрытые лаком пальмовые листья. На Руси же самым распространенным материалом для письма была береста – определенные слои коры березы.

Так называемая берестяная грамота, кусок бересты с выцарапанными знаками, была найдена археологами 26 июля 1951 года на раскопках в Новгороде. О том, что береста использовалась в древней Руси для письма, имелись и письменные свидетельства — об этом упоминает Иосиф Волоцкий в рассказе об обители Сергия Радонежского.

Археологи обнаружили даже миниатюрную берестяную книжечку их 12 страниц размером 5 x 5 см, в которой двойные листы сшиты по сгибу. Подготовка бересты к процессу записи была не сложной. Предварительно ее кипятили, затем соскабливали внутренний слой коры и обрезали по краям. В результате получался материал основы документа в виде ленты или прямоугольника. Обычно использовалась для письма внутренняя сторона бересты, более гладкая. Грамоты сворачивались в свиток. При этом текст оказывался с наружной стороны. Тексты берестяных писем выдавливались с помощью специального инструмента — стилоса, изготовленного из железа, бронзы или кости.

Из-за недостатков предыдущих носителей китайский император Лю Чжао приказал найти им достойную замену. Пока в западном мире шла конкуренция между восковыми табличками, папирусом и пергаментом в Китае во II веке до н.э. была изобретена бумага.

Сначала бумагу в Китае делали из бракованных коконов шелкопряда, затем стали делать бумагу из пеньки. Затем в 105 году н.э. Цай Лунь начал изготавливать бумагу из растолченных волокон шелковицы, древесной золы, тряпок и пеньки. Все это он смешивал с водой и получившуюся массу выкладывал на форму (деревянную раму и сито из бамбука). После сушки на солнце, он эту массу разглаживал с помощью камней. В результате получились прочные листы бумаги. Уже тогда бумага получила в Китае разнообразное и широкое применение. После изобретения Цай Луня, процесс производства бумаги стал быстро совершенствоваться. Стали добавлять для повышения прочности крахмал, клей, естественные красители и т. д.

В начале VII века способ изготовления бумаги становится известным в Корее и Японии. А еще через 150 лет, через военнопленных попадает к арабам. Рожденное в Китае бумажное производство медленно продвигается на Запад, постепенно внедряясь в материальную культуру других народов.

1.2 Классификация современных носителей документированной информации, их характеристика

Начиная с 19 столетия, в связи с изобретением новых способов и средств документирования (фото-, кино, аудиодокументирования и др.), широкое распространение получили многие принципиально новые носители документированной информации. В зависимости от качественных характеристик, а также от способа документирования, их можно классифицировать следующим образом:

  • бумажные;
  • фотографические носители;
  • носители механической звукозаписи;
  • магнитные носители;
  • оптические (лазерные) диски и другие перспективные носители информации.

Важнейшим материальным носителем информации по-прежнему пока остаётся бумага. На отечественном рынке в настоящее время имеются сотни различных видов бумаги и изделий из неё. При выборе бумаги для документирования необходимо учитывать свойства бумаги, обусловленные технологическим процессом её производства, композиционным составом, степенью отделки поверхности и т.п.

Любая бумага, изготовленная традиционным способом, характеризуется определёнными свойствами, которые необходимо принимать во внимание в процессе документирования. К числу таких важнейших свойств и показателей относятся:

  • композиционный состав, т.е. состав и род волокон (целлюлоза, древесная масса, льнопеньковые, хлопковые и др. волокна), их процентное соотношение, степень размола;
  • масса бумаги (масса 1 кв. м бумаги любого сорта). Масса выпускаемой для печати бумаги составляет от 40 до 250 г/кв. м;
  • толщина бумаги (может быть от 4 до 400 мкм);
  • плотность, степень пористости бумаги (количество бумажной массы в г/см Ё);
  • структурные и механические свойства бумаги (в частности, направление ориентации волокон в бумаге, светопроницаемость, прозрачность бумаги, деформации под воздействием влаги и т.п.);
  • гладкость поверхности бумаги;
  • белизна;
  • светопрочность;
  • сорность бумаги (результат использования при её производстве загрязнённой воды) и некоторые другие свойства бумаги.

В зависимости от свойств бумага делится на классы (для печати, для письма, для машинописи, декоративная, упаковочная и др.), а также на виды (типографская, офсетная, газетная, мелованная, писчая, картографическая, ватманская, документная и т.д.). Так, бумага с поверхностной плотностью от 30 до 52 г/м¦ и с преобладанием в её композиционном составе древесной массы называется газетной. Типографская бумага имеет поверхностную плотность от 60 до 80 г/м¦ и изготавливается на основе древесной целлюлозы. Ещё большую плотность имеет картографическая бумага (от 85 до 160 г/м¦). Для технического документирования используется высокосортная белая чертёжная ватманская бумага, которая производится на основе механически обработанного тряпья. Для печатания денежных знаков, облигаций, банковских чеков и других важных финансовых документов используется документная бумага, устойчивая к механическим воздействиям. Она изготавливается на основе льнопеньковых и хлопковых волокон, зачастую с водяными знаками94.

Для механической записи кодированной информации и дальнейшего её использования в информационно-поисковых системах, в перфорационно-вычислительных машинах применялись перфорационные ленты. Они изготавливались из плотной бумаги толщиной около 0,1 мм и шириной 17,5; 20,5; 22,5; 25,5 мм.

Важное значение в документоведении и документационном обеспечении управления имеют форматы бумаги. Ещё в 1833 г. в России был установлен единый размер листа бумаги, а в 1903 г. союз бумажных фабрикантов принял 19 её форматов. Но одновременно существовали многочисленные форматы, возникшие стихийно по инициативе бумажных фабрик и исходя из пожеланий потребителей95. В 1920-е годы после решения большевистского руководства о переходе к метрической системе были упорядочены и форматы бумаги, а впоследствии принят ГОСТ 9327-60 "Бумага и изделия из бумаги. Потребительские форматы". В основу новых форматов была положена система размеров бумаги, впервые предложенная Германской стандартизационной организацией DIN примерно в 1920 году. В 1975 г. эта система стала международным стандартом (ISO 216), будучи принята Международной организацией по стандартизации. Она действует и в России.

Стандарт ISO 216 состоит из трёх серий: A, B и C. В качестве основной установлена серия (ряд) А. Здесь каждый лист бумаги имеет ширину, равную результату деления его длины на корень квадратный из двух (1:1,4142). Площадь основного формата (А0) равна 1 м¦, а его стороны составляют 841х1189 мм. Остальные форматы получаются путём последовательного деления пополам предшествующего формата, параллельно его меньшей стороне. В результате все полученные форматы геометрически подобны. Каждый формат обозначается двумя символами: буквой А, указывающей на принадлежность серии А, и цифрой, обозначающей количество делений исходного формата А0.

Форматы А-серии ISO 216:

4А0 1682х2378 ; 2А0 1189х1682 ; А0 841х1189 ; А1 594х841; А2 420х594 ; А3 297х420 ;

А4 210х297 ; А5 148х210 ; А6 105х148 ; А7 74х105 ; А8 52х74 ; А9 37х52 ; А10 26х37.

Форматы В-серии используются в тех случаях, когда А-серия не имеет подходящего формата. Формат В-серии является средним геометрическим между форматами Аn и А(n+1).

Форматы С-серии стандартизуют конверты. Формат С-серии является средним геометрическим между форматами А и В серий с одним и тем же номером. Например, документ на листе А4 хорошо укладывается в конверт формата С4.

С учётом размеров бумаги по системе ISO созданы копировальные машины, т.е. привязаны к отношению 1:v2. Этот принцип используется также в кино- и фотолабораториях. Копировальные машины снабжены соответствующими наиболее часто используемыми средствами масштабирования, например:

71 % v0,5 А3>А4

141 % v2 А4>А3 (также А5> А4)

Форматы бумаги ISO в настоящее время широко используются во всех промышленно развитых странах, за исключением Соединёных Штатов Америки и Канады, где в офисной работе распространены другие, хотя и очень схожие форматы: "Letter" (216х279 мм), "Legal" (216х356 мм), "Executive" (190х254 мм) и "Ledger/Tabloid" (279х432 мм)97.

Отдельные виды бумаги предназначены специально для репрографических процессов. Главным образом это светочувствительные бумажные носители. Среди них термобумага (термореактивная и термокопировальная бумага); диазобумага (диазотипная или светокопировальная бумага), чувствительная к ультрафиолетовым лучам; калька - прозрачная, прочная, из чистой целлюлозы бумага, предназначенная для копирования чертежей; бумага многослойная для электроискрового копирования и др.

Бумага толщиной свыше 0,5 мм и массой 1 кв. м более 250 г называется картоном. Картон может быть однослойным и многослойным. В делопроизводстве он используется, в частности, для изготовления обложек первичных комплексов документов (дел), регистрационных карточек и т.п.

До недавнего времени широко использовались картонные перфорационные носители цифровой кодированной информации - перфокарты. Они представляли собой прямоугольники размером 187,4х82,5 мм и изготавливались из тонкого, механически прочного картона.

На основе машинных перфокарт изготавливались апертурные карты - карты с вмонтированным кадром микрофильма или отрезком неперфорированной плёнки. Они использовались обычно для хранения и поиска изобразительно-графической технической документации и патентной информации.

Фотоматериалы представляют собой гибкие плёнки, пластинки, бумаги, ткани. Они представляют собой по существу многослойные полимерные системы, состоящие, как правило, из: подложки (основы), на которую наносится подслой, а также светочувствительный эмульсионный слой (галогенид серебра) и противоореольный слой.

Цветные фотоматериалы имеют более сложное строение. Они содержат также сине-, жёлто-, зелёно-, красночувствительные слои. Разработка в 1950-е годы многослойных цветных материалов явилась одним из качественных скачков в истории фотографии, предопределив быстрое развитие и широкое распространение цветной фотографии.

К числу важнейших характеристик фотографических материалов, в частности, фотоплёнок, относятся: светочувствительность, зернистость, контрастность, цветочувствительность.

Киноплёнка является фотографическим материалом на гибкой прозрачной подложке, имеющей с одной или обеих краёв отверстия - перфорации. Исторически первые светочувствительные ленточные носители были на бумажной основе. Использовавшаяся на первых порах нитратцеллюлозная лента представляла собой очень горючий материал. Однако уже в 1897 г. немецким учёным Вебером была изготовлена плёнка с негорючей основой из триацетата целлюлозы, получившая широкое распространение, в том числе в отечественной киноиндустрии. Впоследствии подложка стала изготавливаться из полиэтилентерефталата и других эластичных полимерных материалов.

По сравнению с фотоплёнкой кинолента обычно состоит из большего количества слоёв. На подложку наносится подслой, который служит для закрепления светочувствительного слоя (или нескольких слоёв) на основе. Кроме того, киноплёнка обычно имеет противоореольный, противоскручивающий, а также защитный слой.

Киноплёнки бывают чёрно-белые и цветные. Они делятся также на:

  • негативные;
  • позитивные (для контактного и проекционного печатания);
  • обращаемые (могут использоваться для получения негативов и позитивов);
  • контратипные (для копирования, например, для массового изготовления фильмокопий);
  • гидротипные;
  • фонограммные (для фотографической записи звука).

Чёрно-белая фотографическая плёнка шириной 16 и 35 мм представляет собой наиболее распространённый носитель для изготовления микрофильмов. Основными типами микрофильмов являются микрофильмы рулонные и в отрезке. Микрофильмы в отрезке - это часть рулонной плёнки длиной не менее 230 мм, на которой размещается до нескольких десятков кадров. Микрокарты, микрофиши и ультрамикрофиши являются фактически плоскими форматными микрофильмами. В частности, микрофиша - это лист фотоплёнки формата 105х148 мм.

За более чем вековую историю механической звукозаписи неоднократно менялись и материалы, и форма носителей звуковой информации. Первоначально это были фонографические валики, представлявшие собой полые цилиндры диаметром около 5 см и длиной около 12 см. Они покрывались так называемым "отверждённым воском", на который наносилась звуковая дорожка. Фоновалики быстро изнашивались, их практически невозможно было тиражировать. Поэтому вполне закономерно уже вскоре они оказались вытесненными граммофонными пластинками.

Грампластинки должны были удовлетворять весьма жёстким требованиям, так как в процессе воспроизведения фонозаписи остриё иглы давит на дно канавки с силой около 1 т/см¦. Первая граммофонная пластинка, записанная в 1888 г., представляла собой цинковый диск с выгравированной фонограммой. Затем грампластинки стали отливать из целлулоида, каучука, эбонита. Однако гораздо более дешёвыми, упругими и прочными оказались пластмассовые диски на основе полихлорвинила и винилита. Они имели и лучшее качество звука.

Граммофонные пластинки изготавливались путём прессования, штамповки или литья. Оригиналом грампластинки служил восковый диск, а впоследствии - металлический (никелевый) диск, покрытый специальным лаком (лаковый диск)99.

По типу записи грампластинки, выпускавшиеся в нашей стране, подразделялись на обычные, долгоиграющие и стереофонические. За рубежом, кроме того, были разработаны квадрафоничские пластинки и видеогрампластинки. Кроме того, грампластинки классифицируются по размеру, частоте вращения, тематике записи. В частности, стереофонические пластинки, производство которых в СССР началось с 1958 г., также как и долгоиграющие, выпускались форматом (диаметром) 174, 250 и 300 мм. Частота их вращения обычно составляла 33 об/мин.

С начала 1990-х гг. производство грампластинок в России фактически прекратилось, уступив место другим, более качественным и эффективным способам звукозаписи (электромагнитной, цифровой)

  1. Влияние типа носителя на долговечность и стоимость документа

Передача документированной информации во времени и пространстве непосредственно связана с физическими характеристиками её материального носителя. Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, вследствие перепадов температуры, влажности, под влиянием света, биологических процессов и т.д. К примеру, в настоящее время известно около 400 видов грибов и насекомых, обнаруженных на документах и книгах, способных поражать бумагу, кальку, ткани, дерево, кожу, металл, кинофотоплёнку и другие материалы. Поэтому не случайно проблема долговечности материальных носителей информации во все времена привлекала внимание участников процесса документирования. Уже в древности наблюдается стремление зафиксировать наиболее важную информацию на таких сравнительно долговечных материалах, как камень, металл. К примеру, законы вавилонского царя Хаммурапи были высечены на каменном столбе. И в наши дни эти материалы используются для длительного сохранения информации, в частности, в мемориальных комплексах, на местах захоронений и т.п. В процессе документирования наблюдалось стремление использовать качественные, стойкие краски, чернила. В значительной степени благодаря этому до нас дошли многие важные текстовые исторические памятники, документы прошлого. И, напротив, использование недолговечных материальных носителей (пальмовые листья, деревянные дощечки, берёста и т.п.) привели к безвозвратной утрате большинства текстовых документов далёкого прошлого.

Однако, решая проблему долговечности, человек сразу же вынужден был заниматься и другой проблемой, заключавшейся в том, что долговечные носители информации были, как правило, и более дорогостоящими. Так, книги на пергаменте нередко приравнивались по цене к каменному дому или даже к целому поместью, вносились в завещание, наряду с другим имуществом, а в библиотеках приковывались цепями к стене. Поэтому постоянно приходилось искать оптимальное соотношение между долговечностью материального носителя информации и его стоимостью. Эта проблема до сих пор остаётся весьма важной и актуальной.

Наиболее распространённый в настоящее время материальный носитель документированной информации - бумага - обладает относительной дешевизной, доступностью, удовлетворяет необходимым требованиям по своему качеству и т.д. Однако в то же время бумага является горючим материалом, боится излишней влажности, плесени, солнечных лучей, нуждается в определённых санитарно-биологических условиях. Использование недостаточно качественных чернил, краски приводят к постепенному угасанию текста на бумаге. По мнению специалистов, в середине 19 столетия наступил первый кризисный период в истории бумажного документа. Он был связан с переходом к изготовлению бумаги из древесины, с использованием синтетических красителей, с широким распространением машинописи и средств копирования. В результате долговечность бумажного документа сократилась с тысяч до двухсот - трёхсот лет, т.е. на порядок. Особенно недолговечны документы, изготовленные на бумаге низких по качеству видов и сортов (газетной и т.п.).

В конце 20-го века с развитием компьютерных технологий и использованием принтеров для вывода информации на бумажный носитель вновь возникла проблема долговечности бумажных документов. Дело в том, что многие современные распечатки текстов на принтерах водорастворимы и выцветают. Более долговечные краски, в частности, для струйных принтеров, естественно, являются и более дорогими, а значит - менее доступными для массового потребителя. Использование в России "пиратских" перезаряженных картриджей и тонеров только усугубляет ситуацию.

Материальные носители документированной информации требуют, таким образом, соответствующих условий для их хранения. Однако это далеко не всегда соблюдалось и соблюдается. В результате из ведомственных архивов на государственное хранение в нашей стране документы поступают с дефектами. В 1920-е годы количество дефектов достигало 10-20 %, с 1950-х годов стало уменьшаться от 5 до 1 %, в 1960-1980-е годы было на уровне 0,3-0,5 % (хотя в абсолютных цифрах это составляло 1-2,5 млн. документов). В 1990-е годы хранение документов в ведомственных архивах вновь ухудшилось, как и в первые десятилетия существования советской власти. Всё это оборачивается значительными материальными потерями, поскольку в архивах и библиотеках приходится создавать и содержать дорогостоящие лаборатории, которые занимаются реставрацией бумажных носителей. Приходится также изготавливать архивные копии документов с угасающим текстом и т.п.

В Советском Союзе в своё время была даже создана правительственная программа, предусматривавшая разработку и выпуск отечественных долговечных бумаг для документов, специальных стабильных средств письма и копирования, а также ограничение с помощью нормативов применения недолговечных материалов для создания документов. В соответствии с этой программой, к 1990-м годам были разработаны и стали выпускаться специальные долговечные бумаги для делопроизводства, рассчитанные на 850 и 1000 лет. Был также скорректирован состав отечественных средств письма. Однако дальнейшая реализация программы в современных российских условиях оказалась невозможна, вследствие радикальных социально-политических и экономических преобразований, а также в результате очень быстрой смены способов и средств документирования.

Проблема долговечности и экономической эффективности материальных носителей информации особенно остро встала с появлением аудиовизуальных и машиночитаемых документов, также подверженных старению и требующих особых условий хранения. Причём процесс старения таких документов является многосторонним и существенно отличается от старения традиционных носителей информации.

Во-первых, аудиовизуальные и машиночитаемые документы, равно как и документы на традиционных носителях, подвержены физическому старению, связанному со старением материального носителя. Так, старение фотоматериалов проявляется в изменении свойств их светочувствительности и контрастности при хранении, в увеличении так называемой фотографической вуали, повышении хрупкости плёнок. У цветных фотоматериалов происходит нарушение цветового баланса, т.е. выцветание, проявляющееся в виде искажения цветов и снижения их насыщенности. Особенно нестойкими были кинофотодокументы на нитроплёнке, являвшейся вдобавок ещё и крайне горючим материалом. Очень быстро выцветали первые цветные кинофотодокументы. Надо заметить, что вообще срок сохранности цветных кинодокументов в несколько раз меньше, чем чёрно-белых, вследствие нестойкости красителей цветного изображения. Вместе с тем плёночный носитель является сравнительно долговечным материалом. Не случайно в архивной практике микрофильмы по-прежнему остаются важным способом хранения резервных копий наиболее ценных документов, поскольку могут храниться, по расчётам специалистов не менее 500 лет.

Срок службы граммофонных пластинок определяется их механическим износом, зависит от интенсивности использования, условий хранения. В частности, пластмассовые диски (грампластинки) могут деформироваться при нагревании.

В отличие от традиционных текстовых и графических документов, аудиовизуальные и машиночитаемые документы подвержены техническому старению, связанному с уровнем развития оборудования для считывания информации. Быстрое развитие техники приводит к тому, что возникают проблемы и порой труднопреодолимые препятствия для воспроизведения ранее записанной информации, в частности, с фоноваликов, пластинок, кинолент, поскольку выпуск оборудования для их воспроизведения либо давно прекратился, либо действующее оборудование рассчитано на работу с материальными носителями, обладающими иными техническими характеристиками. К примеру, в настоящее время уже трудно найти компьютер для считывания информации с флоппи-дисков диаметром 5,25", хотя минуло всего лишь пять лет с тех пор, как их вытеснили 3,5-дюймовые дискеты.

Наконец, имеет место логическое старение, которое связано с содержанием информации, программным обеспечением и стандартами сохранности информации. Современные технологии цифрового кодирования позволяют, по мнению учёных, сохранять информацию "практически вечно". Однако для этого необходима периодическая перезапись, например, компакт-дисков - через 20-25 лет. Во-первых, это дорого. А, во-вторых, компьютерная техника развивается настолько быстро, что имеет место нестыковка аппаратуры старых и новых поколений. Например, когда американские архивисты однажды решили ознакомиться с данными переписи населения 1960 г., хранившимися на магнитных носителях, то выяснилось, что эту информацию можно было воспроизвести лишь с помощью двух компьютеров во всём мире. Один из них находился в США, а другой - в Японии.

Техническое и логическое старение приводит к тому, что значительная масса информации на электронных носителях безвозвратно утрачивается. Чтобы не допустить этого, в Библиотеке Конгресса США, в частности, образовано специальное подразделение, где в рабочем состоянии содержатся все устройства для чтения информации с устаревших электронных носителей.

В настоящее время продолжается интенсивный поиск информационно ёмких и одновременно достаточно стабильных и экономичных носителей. Известно, к примеру, об экспериментальной технологии Лос-Аламосской лаборатории (США), которая позволяет записывать ионным пучком кодированную информацию в 2 Гбайт (1 млн. машинописных страниц) на отрезке проволоки длиной всего лишь 2,5 см. При этом прогнозируемая долговечность носителя оценивается в 5 тыс. лет при очень высокой износостойкости. Для сравнения: чтобы записать информацию со всех бумажных носителей Архивного фонда Российской Федерации, потребовалось бы только 50 тыс. таких булавок, т.е. 1 ящик115. На одной из научных конференций, состоявшейся также в США, был продемонстрирован изготовленный из никеля "вечный диск" Rosetta. Он позволяет сохранять в аналоговом виде до 350000 страниц текста и рисунков в течение нескольких тысяч лет.

Таким образом…. Проведя сравнение материальных носителей можно сказать, что с развитием науки и техники будут появляться новые, более совершенные, информационно ёмкие, надёжные и доступные по цене носители документированной информации, которые будут вытеснять устаревшие носители информации, которые мы используем сейчас.


Глава 2. Характеристика магнитных и оптических носителей информации

2.1 Магнитные носители информации

Самым первым носителем магнитной записи, который использовался в аппаратах Поульсена на рубеже 19-20 вв., была стальная проволока диаметром до 1 мм. В начале 20 столетия для этих целей использовалась также стальная катаная лента. Тогда же (в 1906 г.) был выдан и первый патент на магнитный диск. Однако качественные характеристики всех этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км или около 100 кг проволоки.

Лишь со второй половины 1920-х гг., когда была изобретена порошковая магнитная лента, началось широкомасштабное применение магнитной записи. Первоначально магнитный порошок наносился на бумажную подложку, затем - на ацетилцеллюлозу, пока не началось применение в качестве подложки высокопрочного материала полиэтилентерефталата (лавсана). Совершенствовалось также и качество магнитного порошка. Стали использоваться, в частности, порошки оксида железа с добавкой кобальта, металлические магнитные порошки железа и его сплавов, что позволило в несколько раз увеличить плотность записи.

В 1963 г. фирмой Philips была разработана так называемая кассетная запись, позволившая применять очень тонкие магнитные ленты. В компакт-кассетах максимальная толщина ленты составляет всего 20 мкм при ширине 3,81 мм. В конце 1970-х гг. появились микрокассеты размером 50 х 33 х 8 мм, а в середине 1980-х гг. - пикокассеты - втрое меньше микрокассет.

С начала 1960-х гг. широкое применение получили магнитные диски - прежде всего в запоминающих устройствах ЭВМ. Магнитный диск - это алюминиевый или пластмассовый диск диаметром от 30 до 350 мм, покрытый магнитным порошковым рабочим слоем толщиной в несколько микрон. В дисководе, как и в магнитофоне, информация записывается с помощью магнитной головки, только не вдоль ленты, а на концентрических магнитных дорожках, расположенных на поверхности вращающегося диска, как правило, с двух сторон. Магнитные диски бывают жёсткими и гибкими, сменными и встроенными в персональный компьютер. Их основными характеристиками являются: информационная ёмкость, время доступа к информации и скорость считывания подряд.

Алюминиевые магнитные диски - жёсткие (винчестерские) несъёмные диски - в ЭВМ конструктивно объединены в едином блоке с дисководом. Они компонуются в пакеты (стопки) от 4 до 16 штук. Запись данных на жёсткий магнитный диск, также как и чтение, осуществляется на скорости до 7200 оборотов в минуту. Ёмкость диска достигает свыше 9 Гбайт. Эти носители предназначены для постоянного хранения информации, которая используется при работе с компьютером (системное программное обеспечение, пакеты прикладных программ и др.).

Гибкие пластмассовые магнитные диски (флоппи-диски, от англ. floppy - свободно висящий) изготавливаются из гибкого пластика (лавсана) и размещаются по одному в специальных пластиковых кассетах. Кассета с флоппи-диском называется дискетой. Наиболее распространены дискеты с флоппи-дисками диаметром 3,5 и 5,25 дюйма. Ёмкость одной дискеты составляет обычно от 1,0 до 2,0 Мбайт. Однако уже разработана 3,5-дюймовая дискета ёмкостью 120 Мбайт. Кроме того, выпускаются дискеты, предназначенные для работы в условиях повышенной запылённости и влажности.

Широкое применение, прежде всего в банковских системах, нашли так называемые пластиковые карты, представляющие собой устройства для магнитного способа хранения информации и управления данными. Они бывают двух типов: простые и интеллектуальные. В простых картах имеется лишь магнитная память, позволяющая заносить данные и изменять их. В интеллектуальных картах, которые иногда называют смарт-картами (от англ. smart -умный), кроме памяти, встроен ещё и микропроцессор. Он даёт возможность производить необходимые расчёты и делает пластиковые карты многофункциональными.

Следует заметить, что, кроме магнитного, существуют и другие способы записи информации на карту: графическая запись, эмбоссирование (механическое выдавливание), штрих-кодирование, а с 1981 г. - также и лазерная запись (на специальную лазерную карточку, позволяющую хранить большой объём информации, но пока очень дорогую).

Для записи звука в цифровых диктофонах используются, в частности, миникарты, имеющие подобие дискет с объёмом памяти 2 или 4 Мбайт и обеспечивающие запись в течение 1 часа.

В настоящее время материальные носители магнитной записи классифицируют:

  • по геометрической форме и размерам (форма ленты, диска, карты и т.д.);
  • по внутреннему строению носителей (два или несколько слоёв различных материалов);
  • по способу магнитной записи (носители для продольной и перпендикулярной записи);
  • по виду записываемого сигнала (для прямой записи аналоговых сигналов, для модуляционной записи, для цифровой записи).

Технологии и материальные носители магнитной записи постоянно совершенствуются. В частности, наблюдается тенденция к увеличению плотности записи информации на магнитных дисках при уменьшении его размеров и снижении среднего времени доступа к информации.

2.2 Оптические носители информации

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

Впервые оптическая запись звуковых программ для бытовых целей была осуществлена в 1982 г. фирмами "Sony" и "Philips" в лазерных проигрывателях на компакт-дисках, которые стали обозначаться аббревиатурой CD (Compact Disc). В середине 1980-х годов были созданы компакт-диски с постоянной памятью - CD-ROM (Compact Disc - Read Only Memory). C 1995 стали использоваться перезаписываемые оптические компакт-диски: CD-R (CD Recordable) и CD-E (CD Erasable).

Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-селен-свинец и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1-3 мкм¦. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2-4 Гбайт (при диаметре 300 мм).

В отличие от магнитных способов записи и воспроизведения, оптические методы являются бесконтактными. Лазерный луч фокусируется на диск объективом, отстоящим от носителя на расстоянии до 1 мм. При этом практически исключается возможность механического повреждения оптического диска106. Для хорошего отражения лазерного луча используется так называемое "зеркальное" покрытие дисков алюминием или серебром.

Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации - цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт). Увеличение их ёмкости связано с использованием лазерного луча меньшего диаметра, а также двухслойной и двусторонней записи.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

  • диски с постоянной (нестираемой) информацией (CD-ROM). Это пластиковые компакт-диски диаметром 4,72 дюйма и толщиной 0,05 дюйма. Они изготавливаются с помощью стеклянного диска-оригинала, на который наносится фоторегистрирующий слой. В этом слое лазерная система записи формирует систему питов (меток в виде микроскопических впадин), которая затем переносится на тиражируемые диски-копии. Считывание информации осуществляется также лазерным лучом в оптическом дисководе персонального компьютера. CD-ROM обычно обладают ёмкостью 650 Мбайт и используются для записи цифровых звуковых программ, программного обеспечения для ЭВМ и т.п.;
  • диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ. Они представляют собой основу из прозрачного материала, на которую нанесён рабочий слой;
  • реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW; CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения. Они аналогичны дискам для однократной записи, но содержат рабочий слой, в котором физические процессы записи являются обратимыми. Технология изготовления таких дисков сложнее, поэтому они стоят дороже дисков для однократной записи.

Для магнитных носителей (лент, дисков, карт и др.) характерна высокая чувствительность к внешним электромагнитным воздействиям. Они также подвержены физическому старению, изнашиванию поверхности с нанесённым магнитным рабочим слоем (так называемое "осыпание"). Магнитная лента со временем растягивается, в результате чего искажается записанная на ней информация.

По сравнению с магнитными носителями оптические диски более долговечны, поскольку срок их службы определяется не механическим износом, а химико-физической стабильностью среды, в которой они находятся. Оптические диски нуждаются в хранении также в условиях стабильных комнатных температур и с относительной влажностью в пределах, установленных для магнитных лент. Для них противопоказаны чрезмерная влажность, высокая температура и резкие её колебания, загрязнённый воздух. Разумеется, оптические диски следует оберегать и от механических повреждений. При этом надо иметь в виду, что наиболее уязвимой является "нерабочая" окрашенная сторона диска.


Глава 3. Использование магнитных и оптических носителей информации

3.1 Использование носителя в практике работы организаций

Носитель в практике организации важен. Важен тип носителя, его долговечность. Этот выбор зависит от вида электронного документа и срока его хранения. Наиболее распространенный способ хранения информационных ресурсов в организациях - хранение файлов на жестких дисках компьютеров или серверах. Иногда возникает необходимость переноса электронных документов на внешние носители. Для хранения же объемных и сложноструктурных баз данных и других информационных ресурсов (например, научно-технических или издательских), чтобы не нарушать целостности данных, лучше использовать емкие электронные носители: оптические диски, съемные жесткие диски, RAID-массивы и т.п.

Для архивного хранения электронных документов в пределах 5 лет любые современные носители электронной информации (магнитные дискеты, магнитные ленты, магнитные, магнитооптические и оптические диски) вполне надежны.

При долговременном хранении электронных документов на внешних носителях лучшим решением будет использование оптических компакт-дисков CD. Они непритязательны в хранении и вполне надежны в течение 15-20 лет. По истечении этого срока неизбежно придется или переписывать файлы на другой тип носителя (т.к. невозможно будет считать информацию с CD), или конвертировать электронные документы в другие форматы и также переписывать на более современные и емкие носители.

Второй и третий аспекты обеспечения сохранности гораздо сложнее. Они связаны с быстрой сменой и устареванием аппаратного и программного компьютерного обеспечения. Со временем устройства, с помощью которых информация считывается с внешних носителей, изнашиваются и морально устаревают. Так, например, исчезли 5-дюймовые магнитные дискеты, а вслед за ними компьютеры перестали оснащать дисководами для их считывания. В ближайшее время подобная судьба ожидает 3-дюймовые дискеты и многие современные модели ПК уже выпускают без дисководов к ним. Устройства для считывания информации с оптических дисков скорее всего также со временем изменятся. Приблизительный жизненный цикл подобных технологий - 10-15 лет. Эти технологические изменения нужно учитывать при организации долговременного хранения электронных документов.

3.2 Использование магнитных и оптических носителей в практике работы организаций

Воспроизведение электронных документов зависит в первую очередь от применяемого программного обеспечения: ОС, СУБД, браузеров, других прикладных приложений. Смена программной платформы может привести к полной утрате документа из-за невозможности его просмотреть. Впрочем, для основной массы делопроизводственных и финансовых электронных документов со сроком хранения до 5 лет этот фактор не так существенен: жизненный цикл программного обеспечения оценивается в 5-7 лет. В кратковременной перспективе для доступа и воспроизведения большинства текстовых, графических и видео документов (но не баз данных или сложных конструкторских систем и мультимедиа) использование таких конверторов достаточно.

Как уже отмечалось, документирование может осуществляться не только на естественном языке (текстовое документирование), но также и на искусственном языке. В этом случае информация обрабатывается с помощью электронно-вычислительных машин, кодируется, т.е. представляется в той или иной стандартной форме. Причём одни и те же сведения могут быть закодированы в различных формах и, напротив, разные сведения могут быть представлены в похожей форме.

К кодированию информации человек стал прибегать с давних пор. Как справедливо отмечается в литературе, уже письмо и арифметика представляют собой не что иное как системы кодирования речи и числовой информации. Однако решающий шаг был сделан в результате изобретения так называемого двоичного кодирования, т.е. кодирования информации с помощью всего лишь двух символов - 0 и 1, называемых битами (от англ. bit - binary digit - двоичная цифра). Таким способом стало осуществляться кодирование букв, цифр, других знаков и символов, а также изображения, звука. Именно двоичное кодирование было заложено в конструкцию компьютеров.

Техническими предпосылками появления компьютера стало развитие электроники и счётно-аналитической вычислительной техники. Ещё во второй половине 18 века француз Ж.М.Джакард предложил использовать машинные перфокарты для управления ткацкими станками. А в 1834 г. Ч.Бэббедж разработал проект управляемой с помощью программы счётной механической аналитической машины, имевшей практически те же устройства, что и современные компьютеры: память, арифметическое устройство, устройства управления, ввода и вывода информации. В конце 19 века Г.Холлерит сконструировал электромеханическую счётную машину, способную сортировать и считывать информацию с перфокарт, использовавшихся как матричные носители документированной информации. С помощью этой машины удалось всего лишь за один год обработать материалы 11-й переписи населения Северо-Американских Соединённых Штатов, вместо первоначально предполагавшихся 7 лет71. В России счётные машины для работы с перфокартами впервые были применены в 1897 г. для обработки материалов первой всеобщей переписи населения.

В первой четверти 20 столетия были изобретены и широкое распространение в радиотехнике получили электронные лампы. В результате на рубеже 1930-х - 1940-х годов сразу в нескольких странах мира, в том числе и в СССР, возникла идея создания программно-управляемых вычислительных машин. В нашей стране серийное производство ЭВМ было налажено в 1952 г.

С появлением компьютеров началось быстрое развитие автоматизации процессов документирования информации, её передачи, хранения и использования. Всё более широкое распространение получают документы на машинных носителях, т.е. документы, созданные с использованием материальных носителей и способов записи, обеспечивающих обработку документированной информации электронно-вычислительной техникой.

На первых порах в процессе работы с ЭВМ использовался преимущественно перфорационный метод закрепления, передачи и хранения кодированной информации, т.е. необходимая информация с помощью специальных машин - перфораторов и контрольников фиксировалась на машинных перфокартах или перфолентах в виде круглых либо прямоугольных пробивок в определённых информационных точках. Впоследствии закрепление закодированной информации стало осуществляться преимущественно на магнитной ленте, магнитных дисках и др.

С начала 1960-х годов в Советском Союзе стали действовать первые вычислительные комплексы, предназначенные для автоматизированной обработки управленческой информации. К середине 1980-х годов в стране насчитывалось уже более 6000 автоматизированных систем управления. Это привело к массовому созданию управленческих документов на машинных носителях. В 1982 г. было создано первое в СССР архивохранилище машиночитаемых документов.

С конца 1980-х гг. в нашей стране начинается широкое использование персональных компьютеров. К настоящему времени в большинстве организаций, учреждений, на предприятиях работа с документами осуществляется преимущественно с помощью компьютерной техники. Таким образом, электронные документы прочно вошли в сферу документационного обеспечения управления. Во второй половине 1990-х годов вошёл в употребление и сам термин "электронный документ".

Электронные документы имеют технологическую специфику. Содержащаяся в них информация не может восприниматься человеком в той физической форме, в какой она зафиксирована на материальном носителе. Лишь после декодирования эта информация приобретает понятный для пользователя вид (изображение на экране монитора, принтерная распечатка и т.п.).

Подобная специфика порождает дискуссии вокруг понятия "электронный документ". Не случайно сам этот термин пока отсутствует в Государственном стандарте. Вместо него в ГОСТе Р 51141-98 "Делопроизводство и архивное дело. Термины и определения" сохранён прежний термин - "документ на машинном носителе", который определяется как "документ, созданный с использованием носителей и способов записи, обеспечивающих обработку его информации электронно-вычислительной машиной". Предлагаемые же в документоведческих исследованиях определения электронного документа нуждаются в совершенствовании и уточнении.

Постановлением Государственного комитета СССР по стандартам от 9 октября 1984 г. № 3549 срок введения установлен с 01.07.87.

Настоящий стандарт устанавливает требования к составу и содержанию реквизитов, придающих юридическую силу документам на машинном носителе и машинограмме, создаваемым средствами вычислительной техники, а также порядок внесения изменений в эти документы. Настоящий стандарт обязателен для всех предприятий, организаций и учреждений (далее - организаций), осуществляющих информационный обмен документами на машинном носителе и машинограммами.

На основе настоящего стандарта могут быть разработаны отраслевые стандарты и стандарты предприятий с учетом особенностей применения документов на машинном носителе и машинограммы как между организациями, так и при использовании непосредственно в организации.

1. 1.Документ на машинном носителе должен быть записан, изготовлен и размечен в соответствии с требованиями ГОСТ 12065-74, ГОСТ 20598-80, ГОСТ 8303-76, ГОСТ 25752-83, ГОСТ 25764-83, ГОСТ 6.10.1-80, ГОСТ 6.10.2-83, ГОСТ 6.10.3-83, ГОСТ 2.003-77, ГОСТ 2.031-77 – ГОСТ 2.034-77, ГОСТ 19767-74, ГОСТ 19768-74, а информация закодирована в соответствии с общесоюзными классификаторами технико-экономической информации. При отсутствии в общесоюзных классификаторах необходимой информации допускается применять коды зарегистрированных межотраслевых и отраслевых классификаторов.

1.2. Машинограмма должна быть создана с учетом требований государственных стандартов на унифицированные системы документации.

1.3. Документ на машинном носителе и машинограмму следует применять только при наличии соответствующих решений министерств, ведомств.

1.4. Транспортирование (передача, пересылка и т.д.) документа на машинном носителе и машинограммы должно осуществляться с сопроводительным письмом, оформленным по ГОСТ 6.38-72 и ГОСТ 6.39-72. Образец сопроводительного письма приведен в справочном приложении.

1.5. Документ на машинном носителе и машинограмма приобретают юридическую силу после выполнения требований настоящего стандарта и подписания сопроводительного письма.

1.6. Запись документа на машинном носителе и создание машинограммы должны производиться на основе данных, зафиксированных в исходных (первичных) документах, полученных по каналам связи от автоматических регистрирующих устройств или в процессе автоматизированного решения задач.

1.7. По требованию организации-пользователя для визуального контроля документа, созданного на машинном носителе, преобразуют его в человекочитаемую форму различными техническими средствами отображения данных (дисплеи, печатающие устройства и др.).

Взамен настоящего ГОСТа приказом Росстандарта от 17 октября 2013 г. N 1185-ст с 1 марта 2014 г. введен в действие ГОСТ Р 7.0.8-2013

Установленные в стандарте термины расположены в систематизированном порядке, отражающем терминологическую систему понятий в области делопроизводства и архивного дела.

Для каждого понятия установлен один стандартизованный термин.

Недопустимые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой "Ндп".

Термины-синонимы без пометы "Ндп" приведены в качестве справочных данных и не являются стандартизованными.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина.

Наличие квадратных скобок в терминологической статье означает, что в нее включены два термина, имеющие общие терминоэлементы.

В алфавитном указателе данные термины приведены отдельно с указанием номера статьи.

Приведенные определения можно при необходимости изменить, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, - светлым, а синонимы – курсивом.

Настоящий стандарт устанавливает термины и определения понятий в области делопроизводства и архивного дела.

Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и литературы по делопроизводству и архивному делу.

ЗАКЛЮЧЕНИЕ

Проведя сравнение материальных носителей можно сказать, что с развитием науки и техники будут появляться новые носители информации, более совершенные, которые будут вытеснять устаревшие носители информации, которые мы используем сейчас.

Широкое распространение оптических дисков связано с целым рядом их преимуществ по сравнению с магнитными носителями, а именно: высокая надёжность при хранении, большой объём сохраняемой информации, записывание на одном диске звуковой, графической и буквенно-цифровой, быстрота поиска, экономичное средство хранения и предоставления информации, они обладают хорошим соотношением «качество/цена».

Что же касается жестких дисков, то без них пока ещё ни один компьютер не обходился. В развитии жёстких дисков отчётливо прослеживается основная тенденция – постепенное повышение плотности записи, сопровождающееся увеличением скорости вращения шпиндельной головки и уменьшением времени доступа к информации, а в конечном счёте – увеличением производительности. Создание новых технологий постоянно усовершенствует этот носитель, он меняет свою ёмкость до 80 – 175 Гбайт. В более отдалённой перспективе ожидается появления носителя, в котором роль магнитных частиц будут играть отдельные атомы. В результате его ёмкость в миллиарды раз превысит существующие в настоящее время стандарты. Также есть одно преимущество утерянную информацию можно восстановить с помощью определённых программ.

Совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

На стадии разработки находятся голографические цифровые носители информации ёмкостью до 200 Гбайт. Они имеют форму диска, состоящего из трёх слоёв. На стеклянную подложку толщиной 0,5 мм наносится записывающий (рабочий) слой толщиной 0,2 мм и полумиллиметровый прозрачный защитный слой с отражающим покрытием.

Будущее развитие документа связано с компьютеризацией документно-коммуникационной системы, при этом традиционные виды документов сохранятся в информационном обществе наряду с нетрадиционными видами носителей информации, обогащая и дополняя друг друга.

Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, а носители не только подвергаются повреждениям во внешней среде, они подвержены техническому (по уровню развития оборудования) и логическому (связано с содержанием информации, программным обеспечением и стандартам сохранности информации) старению.

В связи с этими факторами активно ведутся работы по созданию компактных носителей, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по такой технологии, может заменить тысячи лазерных дисков.

Стремительное развитие новейших информационных технологий приводит, таким образом, к созданию всё новых, более информационно ёмких, надёжных и доступных по цене носителей документированной информации.

Будущие документоведы должны быть готовы к этому психологически, теоретически и технологически. Нам необходимо идти «в ногу со временем», так как документоведение неразрывно связано с информатикой, где наука не стоит на одном месте.

ЛИТЕРАТУРА

1. Гедрович Ф.А. Цифровые документы: проблемы обеспечения сохранности // Вестник архивиста. 1998. N 1. С.120-122.

2. Банасюкевич В.Д., Устинов В.А. Актуальные научные проблемы обеспечения сохранности архивных документов//Отечественные архивы. 2000. N 1. С.10-17.

3. Н.С.Ларьков «Документоведение», учебное пособие

4. Пашин, С.С. Русские документы XII–XVII веков: Учеб. пособие. – Тюмень: Издательство ТюмГУ, 2006.

5. Привалов В.Ф. Обеспечение сохранности документального наследия в современных условиях // Отечественные архивы. 1999. N 2. С.12-16

6. Журнал мир DVD

Другие похожие работы, которые могут вас заинтересовать.вшм>

12814. Возможность использования короотходов ООО «Камабумпром» в сельском хозяйстве 594.13 KB
В зависимости от породы возраста участка ствола и других факторов на долю коры приходится от 8 до 15 объема древесины. м3 коры в виде отходов окорки в основном хвойных пород. При длительном хранении коры происходит ее частичное разложение с образованием соединений фенольного ряда которые смываются осадками и талыми водами в окружающую среду поэтому утилизация этих отходов вовлечение их в промышленную переработку является весьма актуальной народнохозяйственной и экологической задачей.
8335. Аналоговая и дискретная информация. Носители данных. Операции с данными. Кодирование данных. Системы счисления. Энтропия и количество информации 227.54 KB
Системы счисления. Системы счисления Кодирование данных используется издавна: код Морзе Брайля морской сигнальный алфавит и т. В истории человечества для кодировании чисел наиболее известны две системы счисления: непозиционная и позиционная. Как та так и другая системы счисления характеризуются основанием – количеством различных цифр используемых для записи чисел например от 0 до 9 т.
3170. Курс виртуальных лабораторных работ по дисциплине «Оптические методы и устройства обработки информации» 950.42 KB
Значительная часть оптической обработки информации основана на свойстве преобразования Фурье. Уникальность тонкой положительной линзы заключается в выполнении преобразования Фурье: в когерентном свете распределение амплитуды излучения в задней фокальной плоскости линзы может быть представлено как двумерное комплексное преобразование
19392. Левый радикализм и его носители. Правый радикализм и его носители 21.94 KB
С высот современного знания понятно что при всей своей значимости марксизм не сумел преодолеть определенных элементов утопизма. Маркс и Энгельс подходили к будущему обществу как к антиподу капитализма что было характерно и для утопической традиции. Сегодняшний взгляд таков что капитализм объективно создает все в первую очередь материальные основы будущего социалистического общества что в чистом виде не бывает той или иной формации. Но такой подход определяется в марксизме тем что в XIX веке капитализм являл собой общественный строй...
10988. Методы вторичного использования информации 9.6 KB
Методы вторичного использования информации. Достоинства вторичной информации: небольшая стоимость работ поскольку не нужен сбор новых данных; быстрота сбора материала; наличие нескольких источников информации; достоверность информации от независимых источников; возможность предварительного анализа проблемы. Кабинетные исследования deskreserch Кабинетные исследования desk reserch Кабинетное исследование обработка уже существующей вторичной информации “исследование за письменным столомâ€. В начале каждого маркетингового исследования...
16886. Моделирование индексов потребительских цен для доходных групп российских домашних хозяйств (на основе совместного использования информации выборочных обследований и макростатистики) 60.01 KB
Индекс потребительских цен ИПЦ как самая распространенная мера инфляции применяется для расчета и индексации различных социальных выплат. Хотя в некоторых странах получила распространение практика расчета и публикации индекса цен по доходным группам например в Сингапуре однако методика расчета таких индексов не раскрывается. В условиях когда цены достаточно сильно дифференцированы даже внутри региона и города у потребителя есть возможность выбора.
4745. Магнитные бури 14.66 KB
По современным представлениям основанным на исследованиях межпланетного пространства с помощью различных инструментов магнитные бури происходят в результате взаимодействия высокоскоростных потоков намагниченной солнечной плазмы протонов и электронов с магнитосферой Земли.
9217. МАГНИТНЫЕ ДАТЧИКИ И ПРИБОРЫ КУРСОВЫХ СИСТЕМ 578.41 KB
Угол МК отсчитываемый от магнитного меридиана называется магнитным курсом. При измерении курса компасом например магнитным показания будут отличаться от истинного и магнитного курсов вследствие погрешностей свойственных прибору. Магнитный метод измерения курса основан на определении направления магнитного поля Земли. Большие недостатки магнитного метода способствовали появлению других методов измерения курса в частности и индукционного метода.
12771. Правовое положение кредитных организаций. Деятельность кредитных организаций по привлечению денежных средств физических и юридических лиц. Формы безналичных расчетов 25.14 KB
Банк - кредитная организация, которая имеет исключительное право осуществлять в совокупности следующие банковские операции: привлечение во вклады денежных средств физических и юридических лиц, размещение указанных средств от своего имени и за свой счет на условиях возвратности, платности, срочности, открытие и ведение банковских счетов физических и юридических лиц
19077. Возможность термоупрочнения гильз цилиндрoв ДВС 1.06 MB
Гильзы цилиндров двигателей внутреннего сгорания. Гильзы цилиндpoв дoлжны быть пpoчными жecткими изнococтoйкими обeспeчивть вoзмoжнo мeньшиe потepи н тpeниe пoopшня o пoвepxнocть цилиндр. Гильзы цилиндpoв двигтeлeй внутpeннeгo cгopния. Kcтти cкзть oбъeм этoй гильзы цилиндр cчитeтcя pбoчим oбъeмoм двигтeля pиc.

План реферата

1. Магнитные носители……………………………………………….……3

1.1 Гибкие диски……………………………………………………….….4

2. Оптические носители……………………………………………….…...5

2.1 DVD……………………………………………………………………..5

2.2 Divx………………………………………………………………….…..6

2.3 FMD ROM - накопители третьего тысячелетия………….……...6

2.3.1 Принципы функционирования FMD ROM…………….….…6

2.4 Технология Blu-Ray - преемник DVD………………………….…..7

2.4.1 Характеристики Blu-Ray Disc…………………………..….….8

3. Магнитно-Оптический носитель…………………………………….….8

3.1 Размер 5,25’’…………………..…………………………………..…..9

3.2 Размер 3,5’’……………………………..………………………….….9

3.3 Нестандартные устройства…………………………………….…..9

3.4 Преимущества МО-дисков…………………………………………..9

3.5 Недостатки МО-дисков……………………………………………….9

4. Мобильные носители……………………………………………………10

4.1 USB Flash Memory ...………………………………………………....10

4.2 Принцип действия...……………..………………………………....10

4.2.1 NOR……………………………………………………………..10

4.2.2 NAND…………………………………………………………...11

4.3 Характеристики……………………………………………………...11

4.4 Файловые системы…………………………………………………11

4.5 Применение………………………………………………………….11

4.6 Типы карт памяти……………………………………………………12

1. Магнитные носители

Технология записи информации на магнитные носители появилась в начале 20-го века, но уже в 60-ые - 70-ые годы распространилась во всём мире.

На первой грампластинке записывали мелодии, речь человека.

Технология записи была простой: специальным аппаратом в мягком материале - виниле делались засечки, ямки, канавки. Получалась пластинка, которую прослушивали при помощи другого аппарата - патефона или проигрывателя. Пате­фон состоял из механизма, вращающего пластинку вокруг своей оси, иглы и трубки.

Игла плыла по канавкам, издавая звуки по принципу резонанса - в зависимости от глубины канавки, её ширины, наклона и.т.д. Трубка, находившаяся около самой иголки, усиливала звук (рис. 1).

Похожая система используется в устройствах считывания магнитной записи. Функ­ции составных частей остались прежними, сменились сами составные части - вместо виниловых пластинок используются ленты с напылённым на них слоем ферромагнетиков, на который “запоминается” информация. Вместо иглы - считы­вающее устройство. Вместо трубки, усиливающей звук - динамики.

Запись осуществляется с помощью магнитной индукционной головки, на неё пода­ётся ток, который активирует магнит. Магнитное поле меняется в такт со звуковыми колебаниями, и магнитные частички (домены) меняют своё расположение на поверхности плёнки в соответствии с полем электромагнита.

При воспроизведении происходит обратный процесс: намагниченная лента возбуж­дает в магнитной головке электрические сигналы, которые после усиления поступают в динамик. (рис. 2)

В компьютерной технике данные записываются на магнитные носители так же, но для них нужно меньше места на плёнке. Информация в компьютерах пишется в двоичной системе: если при чтении головка “чувствует” под собой домен, то значение данной частички равно “1”, если не “чувствует”, то - “0”. Компьютер преобразует эти данные в понятную для человека систему.

Существует много типов магнитных носителей: дискеты, аудио- и видеокассеты, бобинные ленты, жёсткие диски внутри компьютеров. Например:

Жесткий диск Barracuda 180

Скорость передачи данных с диска: до 48 Мбайт/с

Скорость вращения шпинделя: 7200 об/мин

Интерфейс: Ultra160 до 160 Мбайт/с, FibreChannel до 200 Мбайт/с

Предел прочности 150 G в нерабочем состоянии

Уровень шума: 37 дБ

Время поиска: 7,5 мс

Очень ёмкий внутренний жесткий диск для РС.

Жесткий диск Cheetah X15_36

Ёмкость: 36,7 и 18,3 Гбайт

Скорость передачи данных с диска: до 48,9 Мбайт/с

Скорость вращения шпинделя: 15.000 об/мин

Интерфейс: Ultra320 до 320 Мбайт/с

Предел прочности G в нерабочем состоянии

Уровень шума: 35/37 дБ

Время поиска: 3,9 мс

Самый быстрый жесткий диск для РС.

1.1 Гибкие диски

В приводе флоппи-диска (Floppy Disk – FD - гибкого диска, или дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винче­стера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а ка­саются ее.

Для каждого из типоразмеров дискет (5,25 или 3,5 дюйма) существуют свои при­воды соответствующего форм-фактора.

Дискеты каждого типоразмера бывают двусторонними (Double Sided, DS), односторонние - устарели. Плотность записи может быть: одинарной (Single Density, SD), двойной (Double Density, DD, емкость 360 или 720 Кбайт) и высокой (High Density, HD, емкость 1,2, 1,44 или 2,88 Мбайта). Плотность определяется величиной зазора между диском и магнитной головкой, а от стабильности зазора зависит качество за­писи - считывания. Для повышения плотности уменьшается зазор, но повышаются требования к рабочей поверхности дисков.

Материал для изготовления магнитных дисков - алюминиевый сплав Д16МП (МП - магнитная память). Он немагнитный, мягкий, достаточно прочный, хорошо об­рабатывается.

Гибкие дисковые устройства состоят из устройства чтения/записи – дисковода и непосредственного носителя – дискеты.

Дискета - это слой магнитно-мягкого материала, нанесенный на подложку из поли­мерного немагнитного пластического материала. Носитель помещается в бумажный или пластмассовый кожух-корпус. Покрытие нанесено с обеих сторон дискеты и чтение/запись производится с обеих сторон. Дискеты разного диаметра имеют различные оформления корпуса. Гибкие диски диаметром 5.25 дюйма помещаются в бумажный кожух, а 3.14 – в пластмассовый. Дискета в кожухе свободно вращается приводом дисковода через окно центрального захвата, что обеспечивает прохождение дорожки под головкой чтения/записи.

На кожухе дискеты имеются отверстия: центрального захвата(3), отверстие пози­ционирования головки(1),отверстие физической защиты от записи (5, 8), направляю­щие отверстия и пазы (2), отверстие определения полного оборота носителя (4). Отверстие для позиционирования магнитных головок чтения/записи у 3.14 дюймовых носителей закрыто металлической задвижкой (7), а отверстие для центрального за­хвата и вращения на шпинделе привода вращения диска, в отличие от носителя диа­метром 5.25 дюймов, находится только с нижней стороны дискеты. Каждый гибкий диск необходимо готовить к приему данных - форматировать. Форматирование дискет производится при помощи программ форматирования дисков.

На дискете указывается параметр называемый числом точек на дюйм носителя – Track per inch (TPI). TPI показывает максимальную плотность размещения областей независимой намагниченности носителя. В соответствии с характеристиками, диск форматируют в рамках его возможностей, иначе возможны потери данных после опе­рации записи.

Дисковод - это устройство чтения/записи с/на дискету. Каждый тип дискет требует собственного устройства. Но существуют и смешанные дисководы, соединяющие в себе устройства для чтения 3.14 и 5.25 дюймовых дискет. Дисководы располагаются внутри системного блока. Однако выпускаются и внешние варианты. Снаружи системного блока находится передняя панель дисковода, на которой распо­лагаются управляющие элементы – кнопка фиксации/извлечения дискеты, отверстие для помещения/извлечения дискеты, индикатор обращения к устройству. Внутри дис­ковод состоит из: двигателя; системы управления вращением носителя; системы управления позиционированием головок чтения/записи; схем формирования и преоб­разования сигналов, и др. электронных устройств. Дисководы подключаются к схемам компьютера интерфейсным кабелем – шлейфом. На концах и/или по длине шлейфа находятся разъемы, один из которых служит для соединения шлейфа с дисководом; другой с интерфейсом дискового устройства на материнской плате. Кабелем питания дисковод подключается к питающему напряжению.

Чтение/запись информации на дискету дают невысокие скорости обмена, объем информации до 2 Мегабайт. Поэтому дискеты используют как средство транспортировки и архивного хранения малых объемов информации. Надежность дискет невысока. Они подвержены вредным воздействиям температурных, гидромет­рических, магнитных, механических и др. факторов. Поэтому с дискетами следует об­ращаться аккуратно.

Недопустимо: хранение дискет в местах воздействия магнитных полей, влаги, механических воздействий, обильного количества пыли, резких перепадов температур. Необходимо осторожно вставлять и извлекать дискету из дисковода только после того, как индикатор обращения к диску погаснет. Необходимо чистить головки чтения/записи при помощи чистящей дискеты и очистителя. Срок службы но­сителя зависит от способа эксплуатации и от исходного качества. Дискеты высокого качества выдерживают до 70 млн. проходов головки по дорожке, что соответствует сроку интенсивной эксплуатации до 20 лет. Дискеты плохого качества подвержены высыпанию частичек магнитного покрытия и размагничиваемости.

2. Оптические носители.

В CD или DVD отражающий алюминиевый слой нанесен на выдавленную подложку из полимера, из-за чего они непрозрачны. При чтении луч полупроводникового лазера отражается от слоя с записанной информацией. Отраженный луч фиксируется детек­тором - приемником. Т.е. считывание идет по принципу: попал или не попал луч в приемник. Максимальная удельная емкость диска определяется размером светового пятна от лазера, которое зависит от длины волны (у красных лазеров - 650нм). Можно использовать два слоя, причем сделать один из слоев прозрачным для излучения с определенной длиной волны, как это реализовано в DVD.

DVD-стандарт базируется на принципах:

  • · большая емкость и возможность ее дальнейшего наращивания;
  • · обратная совместимость с существующими CD;
  • · совместимость с будущими записываемыми DVD-дисками;
  • · единая файловая система для всех приложений;
  • · единый интерактивный стандарт для компьютера и телевидения;
  • · надежность хранения данных и их последующего считывания;
  • · высокая производительность при записи и считывании данных для последовательного и для произвольного доступа к данным;
  • · отсутствие вспомогательных конструкций типа картриджей и кэдди;
  • · доступная цена.

Внешне конструкция DVD аналогична устройству компакт-диска - с теми же геометрическими размерами (диаметр - 120 мм, толщина - 1,2 мм), но она значи­тельно сложнее. Для увеличения объема данных при сохранении тех же геометрических размеров диска, что и CD, были предприняты шаги:

  • · уменьшение размеров углублений (питов) на DVD до 0,4 мкм;
  • · уменьшение расстояния между соседними дорожками (треками) до 0,74 мкм;
  • · размещение несущих информацию слоев в несколько этажей (до 8 пар, и это еще не предел).

DVD может быть как односторонним, так и двухсторонним. Конструктивно двух­сторонний диск представляет собой два склеенных нерабочими поверхностями диска толщиной 0,6 мм каждый. Спецификации DVD-стандарта предусматривают четыре типа дисков с разной информационной емкостью:

  • · односторонний однослойный диск (4,7 Гбайт, видео ресурс - 133 мин.);
  • · односторонний двухслойный диск (8,5 Гбайт, видео ресурс - 240 мин.);
  • · двухсторонний однослойный диск (9,4 Гбайт, видео ресурс - 266 мин.);
  • · двухсторонний двухслойный диск (17 Гбайт, видео ресурс - 481 мин.).

Ёмкость одностороннего однослойного диска в семь раз, а двухстороннего двухслойного - в двадцать шесть раз превышает емкость стандартного компакт-диска.

Для считывания DVD используется луч красного спектра с возможностью двойного фокусирования с длиной волны 650 нм или 635 нм, в зависимости от тол­щины считываемого диска. Привод DVD сам определяет, какой тип диска использу­ется, и автоматически поворачивает линзу в положение нужной фокусировки луча.

DVD, как и компакт-диск малочувствителен к пыли, царапинам и прикоснове­ниям пальцев.

2.2 Divx

Компания Digital Video Express разработала новый формат Divx-диска для однократной записи кинофильмов. Divx - это название системы, установленной непо­средственно в проигрывателе, которая позволяет потребителям в течение двух дней пользоваться правом на прокат видеофильма независимо от даты покупки диска. Разработка этого формата связана с организацией системы временного видеопроката: купив диск, не придется возвращать его назад. Его можно будет воспроизводить только на Divx-проигрывателях. О поддержке этого формата заявили такие крупные компании, как Disney, Dream-Works, Paramount, Universal. Этот диск не совместим с DVD-проигрывателями. Divx обеспечивает нарушение записи на диске.

2.3 FMD ROM - накопители третьего тысячелетия

Превосходство FMD ROM над DVD:
Соотношение размер/емкость. Прототипы FMD ROM способны вмещать до 140Гб при размере диска 12 см в диаметре, т.е. на 5 дюймовом носителе. Это при де­сяти слоях. Число слоев будет увеличиваться. При этом станет возможно создание дисков емкостью в десятки терабайт. На данный момент такой объём информации обеспечивается использованием дисковых массивов, занимающих целые шкафы и комнаты.

Новые объемы потребуют и соответствующих скоростей доступа.
FMD ROM представляет собой полимерную матрицу с фотохромным веществом, по стоимости это пластиковый диск. Нет затрат по созданию дорогостоящих полупрозрачных слоев, как в DVD. Собственно и никаких слоев в привычном смысле этого слова нет.

2.3.1 Принципы функционирования FMD ROM.

FMD ROM - прозрачный диск формата CD или DVD. Диск FMD ROM монолитен и при этом разделен по вертикали на условные "слои" (layer). Они не являются слоями в привычном смысле, это параметр форматирования диска, аналогичный сектору и до­рожке магнитных носителей. Толщина этих слоев строго фиксирована.

Два слоя в CD или DVD - это предел, больше сделать сложно, так как нужны точные фокусирующие системы, которые будут работать только в лабораторных условиях. Массовое производство таких систем является дорогим и нерентабельным.

Разработчиками FMD было предложено решение: материал, содержащий записанную информацию, не отражает, как подложка в DVD или CD, а излучает! Использовано явление флуоресценции, то есть, при освещении активирующим излучением (в данном случае полупроводниковым лазером с определенной длиной волны), вещество начинает излучать, сдвигая спектр падаю­щего на него излучения в сторону красного цвета на определенную величину. Причем величина сдвига зависит от толщины слоя. Выбрав такую толщину слоя, что бы спектр отраженного света получается смещенным относительно длины волны излучающего лазера на строго определенную величину, например на 30 или 50 нм, можно с высокой достоверностью записывать информацию вглубь диска и впоследст­вии считывать ее без потери данных.

Для FMD ROM предложено название "трехмерный диск".

Плотность записи будет зависеть от чувствительности регистрирующего детектора. Чем меньше дополнительное излучение флюоресцирующего вещества, добавляющееся к частоте рабочего лазера, который удастся зафиксировать, тем большее число слоев можно вместить в один диск.

Излученный свет от флуоресцентного слоя некогерентен и хорошо контрастирует с отраженным светом лазера, что является дополнительной гарантией надежности считывания. Отражения будут происходить от поверхности диска и других записанных слоев. Качественное ухудшение сигнала в обычных дисках нарастает с увеличением числа слоев. В случае с флуоресцентными дисками это ухудшение происходит го­раздо медленнее. FMD ROM, даже при количестве слоев больше сотни не будет про­исходить сильного искажения полезного сигнала. Используя синий лазер (480нм) можно увеличить плотность записи до десятков Тб на один FM диск. Возможно созда­ние диска с 1000 слоями - это уже субмолекулярные размеры. Теоретически воз­можно создание пятна размером в несколько молекул, проблема лишь в том, как зафиксировать столь малое излучение.
Одна из главных особенностей этой разработки - возможность параллельного чтения слоев (т.е. последовательность бит будет записана не по "дорожкам", а по слоям) - скорость выборки данных в этом случае должна быть очень высокой.

На фотографии - прототип привода для таких дисков.

Принцип записи на FMD ROM основан на явлении фотохромизма. Фотохромизм - это свойство некоторых веществ под действием активирующего излучения обратимо переходить из одного состояния в другое, при этом изменяя свои физические свой­ства (например, такие как цвет, появление/исчезновение флюоресценции и т.д.). Материал, из которого состоит FMD ROM содержит специальную фотохромную субстанцию, которая циклизуется под воздействием лазерного луча определенной длины волны, превращаясь в необходимый устойчивый флуоресцент. Обратная реак­ция рециклизации, приводящая к исчезновению флуоресцентных свойств (операция стирания), происходит под действием лазера с другой длиной волны. Стирающая час­тота лазера выбирается с таким расчетом, чтобы она не встречалась в повседневной жизни, во избежание потери данных. Читающий лазер, ни в коем случае не должен вносить изменения в данные, хранящиеся на диске.
Идея использования фотохромов в качестве носителей информации не нова. Ей примерно тридцать лет, но лишь теперь она реализована на практике.

2.4 Технология Blu-Ray - преемник DVD

Blu-ray Disc, BD (англ. blue ray - синий луч и disc - диск; написание blu вместо blue - намеренное) - формат оптического носителя, используемый для записи с повышенной плотностью и хранения цифровых данных, включая видео высо­кой чёткости. Стандарт Blu-ray разработан консорциумом BDA. Первый прототип нового носителя представлен в октябре 2000 года. Современный вариант представлен на международной выставке потребительской электроники Consumer Electronics Show (CES). Коммерческий запуск формата Blu-ray прошёл весной 2006 года.

Blu-ray (букв. «синий луч») получил своё название от использования коротковолно­вого (405 нм) «синего» лазера. Буква «e» была исключена из слова «blue» зарегистрировать торговую марку.

С 2006 году и до 2008 года у Blu-ray существовал серьёзный конкурент - альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально поддерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers, последняя компания, выпускавшая свою продукцию в обоих форматах, отка­залась от использования HD DVD в январе 2008 года. 19 февраля 2008 года Toshiba, создатель формата, прекратила разработки в области HD DVD.

Blue Laser DVD диск

Однослойный диск Blu-ray (BD) может хранить 23,3/25/27 или 33 ГБ, двухслой­ный диск может вместить 46,6/50/54 или 66 ГБ. Также в разработке находятся диски вместимостью 100 ГБ и 200 ГБ с использованием четырёх и восьми слоёв соответственно. Корпорация TDK уже анонсировала прототип четырёхслойного диска объёмом 100 ГБ.

5 октября 2009 года японская корпорация TDK сообщила о создании записывае­мого Blu-ray диска ёмкостью 320 гигабайт. Новый десятислойный носитель полностью совместим с существующими приводами, сообщает сайт TechOn.

На данный момент доступны диски BD-R (одноразовая запись) и BD-RE (многоразовая запись), в разработке находится формат BD-ROM. В дополнение к стандартным дискам размером 120 мм, выпущены варианты дисков размером 80 мм для использования в цифровых фото- и видеокамерах. Планируемый объём 15 ГБ.

Привод для записи Blu-Ray дисков

Для совместимости с CD и DVD, Blu-Ray, привод имеет два лазера - основной синий и дополнительный красный. Совместимость с предыдущими форматами нужна, т.к. библиотека DVD и CD очень велика и потребитель не захочет отказываться от нее.

Привод, записывающий Blu-Ray диски Головка с лазером

2.4.1 Характеристики Blu-Ray Disc

Емкость носителя

23.3 Гб / 25 Гб / 27 Гб / 50 Гб / 100 Гб

Длина волны лазера

405nm (blue-violet laser)

Шаг линзы

0.85 NA (numerical aperture)

Скорость пересылки данных

Диаметр диска

Толщина диска

1.2mm (толщина оптически активного слоя - 0.1mm)

Толщина трека

Минимальная длина точки

0.160/0.149/0.138um

Плотность записи

16.8/18.0/19.5 Gbit/inch2

Формат записи видео

MPEG2 video (для видеоплеера),
для компьютера - любые

Формат записи аудио

МО-диск это поликарбонатная подложка толщиной 1,2 мм, на которую нанесено несколько тонкопленочных слоев. В этом заключается магнитная часть технологии, а оптическая представлена считывающим лазером. Защитный слой предохраняет поверхность диска от повреждений. Отражающий - необходим для работы лазера. Диэлектрические слои выполняют две функции: 1)теплоизолируют магнитный слой для эффективности использования энергии лазера при записи; 2)увеличивают эффект поляризации при чтении. Сам МО-диск помещается в пластиковую коробку со "шторкой" и окошечком защиты от записи

Запись на магнитооптический диск осуществляется так: излучение лазера разогре­вает участок дорожки выше температуры точки Кюри, после чего электромагнитный импульс изменяет намагниченность, создавая отпечатки, эквивалентные Питам на оп­тических дисках. Считывание осуществляется тем же самым лазером, но на меньшей мощности, недостаточной для разогрева диска: поляризованный лазерный луч прохо­дит сквозь материал диска, отражается от подложки, проходит сквозь оптическую сис­тему и попадает на датчик. При этом в зависимости от намагниченности изменяется плоскость поляризации луча лазера, что и определяется датчиком.

3.1 Размер 5,25’’

Максимальная емкость - 9,1 Гб. DVD уступают магнитооптике не только по быстродействию, но и по надежности хранения данных. МО-диски выдерживают огромное количество циклов перезаписи, не чувствительны к внешним магнитным по­лям и радиации, гарантируют сохранность записанной информации в течение полусотни лет.

Запись производится с помощью двух головок. Оптическая осуществляет нагрев, а магнитная изменяет направление магнитного поля. Обе стороны диска запи­сываются одновременно, следовательно, скорость записи и чтения данных удваивается.

3.2 Размер 3,5’’

Магнитооптика формата 3,5, в отличие от магнитооптики формата 5,25, ориентиро­вана на массовый рынок. Достоинства: компактность, высокое быстродействие и надежность. Формат высокоплотной записи GigaMO - составляет 1,3Гб и 2,3Гб. Эти форматы предусматривают полную обратную совместимость устройств с носителями предыдущих поколений (128-640 Мб).

3.3 Нестандартные устройства

Диск диаметра 50 мм (чуть меньше 3,5 дюймового) вмешает 730 Мб. Он идеально подходит для применения в карманных и цифровых устройствах различного назначения.

Диск диаметром 50,8мм, высокой плотности. Объем хранимой информации приблизительно равен 1-2 Гб, предназначен для использования в портативных вычислительных устройствах, главным образом в ноутбуках.

3.4 Преимущества МО-дисков

¨ Слабая подверженность механическим повреждениям

¨ Слабая подверженность магнитным полям

¨ Гарантированное качество записи

¨ Работа как с жестким диском

¨ [править]

3.5 Недостатки МО-дисков

¨ Высокое энергопотребление. Для разогрева поверхности требуются ла­зеры значительной мощности, а, следовательно, и высокого энергопотребления. Это затрудняет использование пишущих МО приводов в мобильных устройствах.

¨ Высокая цена, как самих дисков, так и накопителей.

¨ Малая распространённость.

4 Мобильные носители

4.1 USB Flash Memory

Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти (ПППЗУ).

Она может быть прочитана сколько угодно раз (в пределах срока хранения данных, типично - 10-100 лет), но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержать дискета или CD-RW.

Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах - фото- и видеокамерах, диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения.

Широкое распространение получили USB флеш-накопители («флешка», USB-драйв, USB-диск), практически вытеснившие дискеты и CD.

Основным недостатком является высокое соотношение цена/объём, превышающее этот параметр у жестких дисков в 2-3 раза. Работы в этом направлении ведутся - удешевляется технологический процесс, усиливается конкуренция. В ноябре 2009 года компания OCZ предложила SSD-накопитель ёмкостью 1Тб и 1,5 млн циклов перезаписи.

Ещё один недостаток флеш-памяти по сравнению с жёсткими дисками - меньшая скорость. Производители SSD-накопителей заверяют, что скорость этих устройств выше скорости винчестеров, но в реальности она ощутимо ниже. Это приводит к снижению общей производительности. Последние модели SSD-накопителей по этому параметру уже приблизились к винчестерам, но они слишком дороги.

4.2 Принцип действия

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC; triple-level cell, TLC ) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

4.2.1 NOR

В основе этого типа флеш-памяти лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.


Накопители на гибких магнитных дисках: принцип действия, технические характеристики, основные компоненты. Накопители на жестких магнитных дисках: форм-факторы, принцип работы, типы, основные характеристики, режимы работы. Конфигурирование и форматирование магнитных дисков. Утилиты обслуживания жестких магнитных дисков. Логическая структура и формат магнитооптических и компакт-дисков. Приводы CD-R (RW), DVD-R (RW), ZIP: принцип действия, основные компоненты, технические характеристики. Магнитооптические накопители, стримеры, флэш-диски. Обзор основных современных моделей.

Студент должен знать:

Принцип действия и основные компоненты дисковода FDD;

Характеристики и режимы работы накопителя на жестких магнитных дисках;

Принцип работы приводов магнитооптических и компакт-дисков;

Форматы оптических и магнитооптических дисков;

Студент должен уметь:

Записывать информацию на различные носители;

Использовать программные средства технического обслуживания жесткого диска;

Определять основные характеристики накопителей;

Цели занятия:

Ознакомить студентов с основными компонентами накопителями информации.

Изучить типы накопителей информации их характеристики.

Воспитание информационной культуры учащихся, внимательности, аккуратности, дисциплинированности, усидчивости.

Развитие познавательных интересов, навыков самоконтроля, умения конспектировать.

Ход занятия :

Теоретическая часть.

Хранение данных на магнитных носителях

Практически во всех персональных компьютерах информация хранится на носителях, использующих магнитные или оптические принципы. При использовании магнитных устройств хранения двоичные данные “превращаются” в небольшие металлические намагниченные частички, расположенные на плоском диске или ленте в виде “узора”. Этот магнитный “узор” впоследствии может быть расшифрован в поток двоичных данных.

В основе работы магнитных носителей - накопителей на жестких и гибких дисках - лежит электромагнетизм. Суть его состоит в том, что при пропускании через проводник электрического тока вокруг него образуется магнитное поле (рис. 1). Это поле воздействует на оказавшееся в нем ферромагнитное вещество. При изменении направления тока полярность магнитного поля также изменяется. Явление электромагнетизма используется в электродвигателях для генерации сил, воздействующих на магниты, которые установлены на вращающемся валу.

Однако существует и противоположный эффект: в проводнике, на который воздействует переменное магнитное поле, возникает электрический ток. При изменении полярности магнитного поля изменяется и направление электрического тока (рис. 2).

Головка чтения/записи в любом дисковом накопителе состоит из U-образного ферромагнитного сердечника и намотанной на него катушки (обмотки), по которой может протекать электрический ток. При пропускании тока через обмотку в сердечнике (магнитопроводе) головки создается магнитное поле (рис. 3). При переключении направления протекающего тока полярность магнитного поля также изменяется. В сущности, головки представляют собой электромагниты, полярность которых можно очень быстро изменить, переключив направление пропускаемого электрического тока.

Рис. 1. При пропускании тока через проводник вокруг него образуется магнитное поле

Рис. 2. При перемещении проводника в магнитном поле в нем генерируется электрический ток

Рис. 3. Головка чтения/записи

Магнитное поле в сердечнике частично распространяется в окружающее пространство благодаря наличию зазора, “пропиленного” в основании буквы U. Если вблизи зазора располагается другой ферромагнетик (рабочий слой носителя), то магнитное поле в нем локализуется, поскольку подобные вещества обладают меньшим магнитным сопротивлением, чем воздух. Магнитный поток, пересекающий зазор, замыкается через носитель, что приводит к поляризации его магнитных частиц (доменов) в направлении действия поля. Направление поля и, следовательно, остаточная намагниченность носителя зависят от полярности электрического поля в обмотке головки.

Гибкие магнитные диски обычно делаются на лавсановой, а жесткие - на алюминиевой или стеклянной подложке, на которую наносится слой ферромагнитного материала. Рабочий слой в основном состоит из окиси железа с различными добавками. Магнитные поля, создаваемые отдельными доменами на чистом диске, ориентированы случайным образом и взаимно компенсируются на любом сколько-нибудь протяженном (макроскопическом) участке поверхности диска, поэтому его остаточная намагниченность равна нулю.

Если участок поверхности диска при протягивании вблизи зазора головки подвергается воздействию магнитного поля, то домены выстраиваются в определенном направлении и их магнитные поля больше не компенсируют друг друга. В результате на этом участке появляется остаточная намагниченность, которую можно впоследствии обнаружить. Выражаясь научным языком, можно сказать: остаточный магнитный поток, формируемый данным участком поверхности диска, становится отличным от нуля.

Конструкции головок чтения/записи

По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи - чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных типов.

Чаще всего используются головки следующих четырех типов:

ü ферритовые;

ü с металлом в зазоре (MIG);

ü тонкопленочные (TF);

ü магниторезистивные (MR);

ü гигантские магниторезистивные (GMR).

· Ферритовые головки

Классические ферритовые головки впервые были использованы в накопителе Winchester 30-30 компании IBM. Их сердечники делаются на основе прессованного феррита (на основе окиси железа). Магнитное поле в зазоре возникает при протекании через обмотку электрического тока. В свою очередь, при изменениях напряженности магнитного поля вблизи зазора в обмотке наводится электродвижущая сила. Таким образом, головка является универсальной, т.е. может использоваться как для записи, так и для считывания. Размеры и масса ферритовых головок больше, чем у тонкопленочных; поэтому, чтобы предотвратить их нежелательные контакты с поверхностями дисков, приходится увеличивать зазор.

За время существования ферритовых головок их первоначальная (монолитная) конструкция была значительно усовершенствована. Были разработаны, в частности, так называемые стеклоферритовые (композитные) головки, небольшой ферритовый сердечник которых установлен в керамический корпус. Ширина сердечника и магнитного зазора таких головок меньше, что позволяет повысить плотность размещения дорожек записи. Кроме того, снижается их чувствительность к внешним магнитным помехам.

· Головки с металлом в зазоре

Головки с металлом в зазоре (Metal-In-Gap - MIG) появились в результате усовершенствования конструкции композитной ферритовой головки. В таких головках магнитный зазор, расположенный в задней части сердечника, заполнен металлом. Благодаря этому существенно уменьшается склонность материала сердечника к магнитному насыщению, что позволяет повысить магнитную индукцию в рабочем зазоре и, следовательно, выполнить запись на диск с большей плотностью. Кроме того, градиент магнитного поля, создаваемого головкой с металлом в зазоре, выше, а это означает, что на поверхности диска формируются намагниченные участки с более четко выраженными границами (уменьшается ширина зон смены знака).

Эти головки позволяют использовать носители с большой коэрцитивной силой и тонкопленочным рабочим слоем. За счет уменьшения общей массы и улучшения конструкции такие головки могут располагаться ближе к поверхности носителя.

Головки с металлом в зазоре бывают двух видов: односторонние и двусторонние (т.е. с одним и с двумя металлизированными зазорами). В односторонних головках прослойка из магнитного сплава расположена только в заднем (нерабочем) зазоре, а в двусторонних - в обоих. Слой металла наносится методом вакуумного напыления. Индукция насыщения магнитного сплава примерно вдвое больше, чем у феррита, что, как уже отмечалось, позволяет осуществлять запись на носители с большой коэрцитивной силой, которые используются в накопителях высокой емкости. Двусторонние головки в этом отношении лучше односторонних.

· Тонкопленочные головки

Тонкопленочные (Thin Film - TF) головки производятся почти по той же технологии, что и интегральные схемы, т.е. путем фотолитографии. На одной подложке можно “напечатать” сразу несколько тысяч головок, которые получаются в результате маленькими и легкими.

Рабочий зазор в тонкопленочных головках можно сделать очень узким, причем его ширина регулируется в процессе производства путем наращивания дополнительных слоев немагнитного алюминиевого сплава. Алюминий полностью заполняет рабочий зазор и хорошо защищает его от повреждений (сколов краев) при случайных контактах с диском. Собственно сердечник делается из сплава железа и никеля, индукция насыщения которого в 2–4 раза больше, чем у феррита.

Формируемые тонкопленочными головками участки остаточной намагниченности на поверхности диска имеют четко выраженные границы, что позволяет добиться очень высокой плотности записи. Благодаря небольшому весу и малым размерам головок можно значительно уменьшить просвет между ними и поверхностями дисков по сравнению с ферритовыми и MIG-головками: в некоторых накопителях его величина не превышает 0,05 мкм. В результате, во-первых, повышается остаточная намагниченность участков поверхности носителя и, во-вторых, увеличивается амплитуда сигнала и улучшается соотношение “сигнал–шум” в режиме считывания, что в итоге сказывается на достоверности записи и считывания данных.

В настоящее время тонкопленочные головки используются в большинстве накопителей высокой емкости, особенно в малогабаритных моделях, практически вытеснив головки с металлом в зазоре. Их конструкция и характеристики постоянно улучшаются, но, скорее всего, в ближайшее время они будут вытеснены магниторезистивными головками.

· Магниторезистивные головки

Магниторезистивные (Magneto-Resistive - MR) головки появились сравнительно недавно. Они разработаны компанией IBM и позволяют добиться самых высоких значений плотности записи и быстродействия накопителей. Впервые магниторезистивные головки были установлены в накопителе на жестких дисках емкостью 1 Гбайт (3,5") компании IBM в 1991 году.

Все головки являются детекторами, т.е. регистрируют изменения в зонах намагниченности и преобразуют их в электрические сигналы, которые могут быть интерпретированы как данные. Однако при магнитной записи существует одна проблема: при уменьшении магнитных доменов носителя уменьшается уровень сигнала головки и существует вероятность принять шум за “настоящий” сигнал. Для решения этой проблемы необходимо иметь эффективную головку чтения, которая более достоверно сможет определить наличие сигнала.

Магниторезистивные головки дороже и сложнее головок других типов, поскольку в их конструкции есть добавочные элементы, а технологический процесс включает несколько дополнительных этапов. Ниже перечислены основные отличия магниторезистивных головок от обычных:

v к ним должны быть подведены дополнительные провода для подачи измерительного тока на резистивный датчик;

v в процессе производства используется 4–6 дополнительных масок (фотошаблонов);

v благодаря высокой чувствительности магниторезистивные головки более восприимчивы к внешним магнитным полям, поэтому их приходится тщательно экранировать.

Во всех рассмотренных ранее головках в процессе записи и считывания “работал” один и тот же зазор, а в магниторезистивной головке их два - каждый для своей операции. При разработке головок с одним рабочим зазором приходится идти на компромисс при выборе его ширины. Дело в том, что для улучшения параметров головки в режиме считывания нужно уменьшать ширину зазора (для увеличения разрешающей способности), а при записи зазор должен быть шире, поскольку при этом магнитный поток проникает в рабочий слой на большую глубину (“намагничивая” его по всей толщине). В магниторезистивных головках с двумя зазорами каждый из них может иметь оптимальную ширину. Еще одна особенность рассматриваемых головок заключается в том, что их записывающая (тонкопленочная) часть формирует на диске более широкие дорожки, чем это необходимо для работы считывающего узла (магниторезистивного). В данном случае считывающая головка “собирает” с соседних дорожек меньше магнитных помех.

· Гигантские магниторезистивные головки

В 1997 году IBM анонсировала новый тип магниторезистивных головок, обладающих намного большей чувствительностью. Они были названы гигантскими магниторезистивными головками (Giant Magnetoresistive - GMR). Такое название они получили на основе используемого эффекта (хотя по размеру были меньше стандартных магниторезистивных головок). Эффект GMR был открыт в 1988 году в кристаллах, помещенных в очень сильное магнитное поле (приблизительно в 1 000 раз превышающее магнитное поле, используемое в накопителях на жестких дисках).

Способы кодирования данных

Данные на магнитном носителе хранятся в аналоговой форме. В то же время сами данные представлены в цифровом виде, так как являются последовательностью нулей и единиц. При выполнении записи цифровая информация, поступая на магнитную головку, создает на диске магнитные домены соответствующей полярности. Если во время записи на головку поступает положительный сигнал, магнитные домены поляризуются в одном направлении, а если отрицательный - в противоположном. Когда меняется полярность записываемого сигнала, происходит также изменение полярности магнитных доменов.

Если во время воспроизведения головка регистрирует группу магнитных доменов одинаковой полярности, она не генерирует никаких сигналов; генерация происходит только тогда, когда головка обнаруживает изменение полярности. Эти моменты изменения полярности называются сменой знака. Каждая смена знака приводит к тому, что считывающая головка выдает импульс напряжения; именно эти импульсы устройство регистрирует во время чтения данных. Но при этом считывающая головка генерирует не совсем тот сигнал, который был записан; на самом деле она создает ряд импульсов, каждый из которых соответствует моменту смены знака.

Чтобы оптимальным образом расположить импульсы в сигнале записи, необработанные исходные данные пропускаются через специальное устройство, которое называется кодером/декодером (encoder/decoder). Это устройство преобразует двоичные данные в электрические сигналы, оптимизированные в аспекте размещения зон смены знака на дорожке записи. Во время считывания кодер/декодер выполняет обратное преобразование: восстанавливает из сигнала последовательность двоичных данных. За прошедшие годы было разработано несколько методов кодирования данных, причем главной целью разработчиков было достижение максимальной эффективности и надежности записи и считывания информации.

При работе с цифровыми данными особое значение приобретает синхронизация. Во время считывания или записи очень важно точно определить момент каждой смены знака. Если синхронизация отсутствует, то момент смены знака может быть определен неправильно, в результате чего неизбежна потеря или искажение информации. Чтобы предотвратить это, работа передающего и принимающего устройств должна быть строго синхронизирована. Существует два пути решения данной проблемы. Во-первых, синхронизировать работу двух устройств, передавая специальный сигнал синхронизации (или синхросигнал) по отдельному каналу связи. Во-вторых, объединить синхросигнал с сигналом данных и передать их вместе по одному каналу. Именно в этом и заключается суть большинства способов кодирования данных.

Хотя разработано великое множество самых разнообразных методов, на сегодняшний день реально используются только три из них:

ü частотная модуляция (FM);

ü модифицированная частотная модуляция (MFM);

ü кодирование с ограничением длины поля записи (RLL).

Частотная модуляция (FM)

Метод кодирования FM (Frequency Modulation - частотная модуляция) был разработан прежде других и использовался при записи на гибкие диски так называемой одинарной плотности (single density) в первых ПК. Емкость таких односторонних дискет составляла всего 80 Кбайт. В 1970-х годах запись по методу частотной модуляции использовалась во многих устройствах, но сейчас от него полностью отказались.

Модифицированная частотная модуляция (MFM)

Основной целью разработчиков метода MFM (Modified Frequency Modulation - модифицированная частотная модуляция) было сокращение количества зон смены знака для записи того же объема данных по сравнению с FM-кодированием и соответственно увеличение потенциальной емкости носителя. При этом способе записи количество зон смены знака, используемых только для синхронизации, уменьшается. Синхронизирующие переходы записываются только в начало ячеек с нулевым битом данных и только в том случае, если ему предшествует нулевой бит. Во всех остальных случаях синхронизирующая зона смены знака не формируется. Благодаря такому уменьшению количества зон смены знака при той же допустимой плотности их размещения на диске информационная емкость по сравнению с записью по методу FM удваивается.

Вот почему диски, записанные по методу MFM, часто называют дисками двойной плотности (double density). Поскольку при рассматриваемом способе записи на одно и то же количество зон смены знака приходится вдвое больше “полезных” данных, чем при FM-кодировании, скорость считывания и записи информации на носитель также удваивается.

Кодирование с ограничением длины поля записи (RLL)

На сегодняшний день наиболее популярен метод кодирования с ограничением длины поля записи (Run Length Limited - RLL). Он позволяет разместить на диске в полтора раза больше информации, чем при записи по методу MFM, и в три раза больше, чем при FM-кодировании. При использовании этого метода происходит кодирование не отдельных битов, а целых групп, в результате чего создаются определенные последовательности зон смены знака.

Метод RLL был разработан IBM и сначала использовался в дисковых накопителях больших машин. В конце 1980-х годов его стали использовать в накопителях на жестких дисках ПК, а сегодня он применяется почти во всех ПК.

Измерение емкости накопителя

В декабре 1998 года Международная электротехническая комиссия (МЭК), занимающаяся стандартизацией в области электротехники, представила в качестве официального стандарта систему названий и символов единиц измерения для использования в области обработки и передачи данных. До недавнего времени при одновременном использовании десятичной и двоичной систем измерений один мегабайт мог быть равен как 1 млн байт (106), так и 1 048 576 байт (220). Стандартные сокращения единиц, используемые для измерения емкости магнитных и других накопителей, приведены в табл. 1.

В соответствии с новым стандартом 1 MiB (mebibyte) содержит 220 (1 048 576) байт, а 1 Мбайт (мегабайт) - 106 (1 000 000) байт. К сожалению, не существует общепринятого способа отличать двоичные кратные единицы измерения от десятичных. Другими словами, английское сокращение MB (или M) может обозначать как миллионы байтов, так и мегабайты.

Как правило, объемы памяти измеряются в двоичных единицах, но емкость накопителей - и в десятичных и в двоичных, что часто приводит к недоразумениям. Заметьте также, что в английском варианте биты (bits) и байты (Bytes) отличаются регистром первой буквы (она может быть строчной или прописной). Например, при обозначении миллионов битов используется строчная буква “b”, в результате чего единица измерения миллион битов в секунду обозначается Mbps, в то время как MBps означает миллион байтов в секунду.

Что такое жесткий диск

Самым необходимым и в то же время самым загадочным компонентом компьютера является накопитель на жестком диске. Как известно, он предназначен для хранения данных, и последствия его выхода из строя зачастую оказываются катастрофическими. Для правильной эксплуатации или модернизации компьютера необходимо хорошо представлять себе, что же это такое - накопитель на жестком диске.

Основными элементами накопителя являются несколько круглых алюминиевых или некристаллических стекловидных пластин. В отличие от гибких дисков (дискет), их нельзя согнуть; отсюда и появилось название жесткий диск (рис. 4). В большинстве устройств они несъемные, поэтому иногда такие накопители называются фиксированными (fixed disk). Существуют также накопители со сменными дисками, например устройства Iomega Zip и Jaz.

Новейшие достижения

Почти за 20 лет, прошедших с того времени, как жесткие диски стали привычными компонентами персональных компьютеров, их параметры радикально изменились. Чтобы дать некоторое представление о том, как далеко зашел процесс усовершенствования жестких дисков, приведем самые яркие факты.

Максимальная емкость 5,25-дюймовых накопителей увеличилась от 10 Мбайт (1982 год) до 180 Гбайт и больше для 3,5-дюймовых накопителей половинной высоты (Seagate Barracuda 180). Емкость 2,5-дюймовых дисководов с высотой не более 12,5 мм, которые используются в портативных компьютерах, выросла до 32 Гбайт (IBM Travelstar 32GH). Жесткие диски объемом менее 10 Гбайт в современных настольных компьютерах практически не используются.

Скорость передачи данных увеличилась от 85–102 Кбайт/с в компьютере IBM XT (1983 год) до 51,15 Мбайт/с в наиболее быстродействующих системах (Seagate Cheetah 73LP).

Среднее время поиска (т.е. время установки головки на нужную дорожку) уменьшилось от 85 мс в компьютере IBM XT (1983 год) до 4,2 мс в одном из самых быстродействующих на сегодняшний день дисководе (Seagate Cheetah X15).

В 1982 году накопитель емкостью 10 Мбайт стоил более 1500 долларов (150 долларов за мегабайт). В настоящее время, стоимость жестких дисков снизилась до половины цента за мегабайт.

Рис. 4. Вид накопителя на жестких дисках со снятой верхней крышкой

Принципы работы накопителей на жестких дисках

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый), как показано на рис. 5.

В накопителях обычно устанавливается несколько дисков, и данные записываются на обеих сторонах каждого из них. В большинстве накопителей есть по меньшей мере два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр (рис. 6). Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.

Жесткие диски вращаются намного быстрее, чем гибкие. Частота их вращения даже в большинстве первых моделей составляла 3 600 об/мин (т.е. в 10 раз больше, чем в накопителе на гибких дисках) и до последнего времени была почти стандартом для жестких дисков. Но в настоящее время частота вращения жестких дисков возросла. Например, в портативном компьютере Toshiba диск объемом 3,3 Гбайт вращается с частотой 4 852 об/мин, но уже существуют модели с частотами 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин. Скорость работы того или иного жесткого диска зависит от частоты его вращения, скорости перемещения системы головок и количества секторов на дорожке.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка “столкнется” с диском, вращающимся “на полном ходу”. Если удар будет достаточно сильным, произойдет поломка головки. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные “взлеты” и “приземления” головок, а также более серьезные потрясения.


Рис. 5. Дорожки и секторы накопителя на жестких дисках

Рис. 6. Цилиндр накопителя

на жестких дисках


Дорожки и секторы

Дорожка - это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байт, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета HD (High Density) формата 3,5 дюйма (емкостью 1,44 Мбайт) содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1), и каждая дорожка цилиндра разбита на 18 секторов (1–18).

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочей служебной информации, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion), в котором находится контрольная сумма (checksum), необходимая для проверки целостности данных. В большинстве новых дисководов вместо заголовка используется так называемая запись No-ID, вмещающая в себя больший объем данных. Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт.

Для наглядности представьте, что секторы - это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (в нашей аналогии это будет соответствовать номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

Форматирование дисков

Различают два вида форматирования диска:

ü физическое, или форматирование низкого уровня;

ü логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Explorer Windows 9x или команды DOS FORMAT выполняются обе операции, но для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня (которые могут быть различными для разных операционных систем). Это позволяет совмещать несколько операционных систем на одном жестком диске.

При организации нескольких разделов на одном накопителе каждый из них может использоваться для работы под управлением своей операционной системы либо представлять отдельный том (volume), или логический диск (logical drive). Том, или логический диск, - это то, чему система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа.

1. Форматирование низкого уровня.

2. Организация разделов на диске.

3. Форматирование высокого уровня.