Компьютеры Windows Интернет

Акустическая система для самостоятельного изготовления. Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля) Акустические системы с фазоинвертором

Большим недостатком современных динамических громкоговорителей является острая характеристика направленности в области высоких частот, что создает определенные неудобства при прослушивании монофонических программ и сужает зону стереоэффекта при использовании обычных акустических систем в стереофонии.

В различной отечественной и зарубежной литературе неоднократно приводился рисунок (рис. 1), иллюстрирующий влияние расположения громкоговорителей на зону стереоэффекта.

Рис. 1. Зона заметного стереоэффекта: а - при размещении одиночных громкоговорителей в углах помещения, б - при размещении системы из трех громкоговорителей в каждом канале вдоль узкой стороны комнаты.

Для расширения зоны стереоэффекта многие любители стереофонического звуковоспроизведения применяют один - два громкоговорителя закрытого типа в каждом канале, располагая их в углах комнаты, как показанной на рис. 2.

Рис. 2. Размещение громкоговорителей по углам комнаты.

Выпускаемые рядом иностранных фирм высокочастотные акустические агрегаты выполнены в форме куба, на внутренней стороне каждой грани которого размещен громкоговоритель (всего 6 штук).

Применение всенаправленных излучателей не только расширяет зону стереоэффекта, но и позволяет значительно снизить необходимую площадь помещения с 18-20 до 12-15 кв.м. В материалах рекламной иностранной печати имеются сообщения, что использование всенаправленных излучателей позволяет получить удовлетворительный стереоэффект даже в салоне легкового автомобиля.

В конструкции применены отечественные громкоговорители 1ГД-3 РР3 со следующими основными параметрами: среденее стандартное звуковое давление 0,3 н/м2, собственная частота механического резонанса 4,5±1 кГц, модуль полного электрического сопротивления на чатсоте 630 Гц — 12,5 Ом, номинальная мощность 1 Вт, рабочий диапазон частот 5-18 кГц.

Общий вид акустики показан на рис. 3. Сферический фронт звуковой волны от громкоговорителя 1 (на рисунке дан разрез диффузора громкоговорителя) попадает на рассеивающую линзу 2. Отраженные от линзы звуковые колебания имеют круговую характеристику направленности в горизонтальной плоскости. Образующая линза рассчитана таким образом, что и в вертикальной плоскости появляется характеристика направленности громкоговорителя. Для увеличения звукового давления и расширения характеристики направленности в агрегате используются два громкоговорителя.

Рис. 3. Общий вид акустического агрегата: 1 — громкоговоритель, 2 — исскуственная линза, 3 — корпус, 4 — дюралиевая линза, 5 — кольцо, 6 — капроновая стека, 7 — стойки, 8 — основание, 9 — муфты.

При сборке агрегата громкоговоритель с капроновой сеткой, защищающий его от пыли, приклеивают его к пластине 4 и запрессованному в нем кольцу 5. Затем весь узел с помощью стоек 7 крепят к корпусу 3. Стойки 7 держат также основание 8 с приклеенными к нему линзами 2.

Эскизы деталей агрегата показана на рис. 4. Корпус 3 и основание фанерованы, можно использовать пластик с рисунком, иммитируюший ценные породы дерева. Остальные детали изготовлены из дюралюминия Д16. Наружные поверхности этих деталей отполированы.

Рис. 4. Эскизы деталей агрегата.

Электрическое включение громкоговорителей агрегата определяется параметрами усилителя и низкочастотных громкоговорителей. Для однополосных усилителей с номинальной выходной мощностью 5-10 Вт можно рекомендовать вариант включения агрегата, поаказанный на рис. 5, а.

Рис. 5. Электрические схемы включения громкоговорителей акустического агрегата.

Для стереофонических усилителей с одним низкочастотным громкоговорителем схема упрощается. На рис. 5, б, например, показана схема подключения агрегата к звуковой колонке магнитофона «Яуза-10».Дроссели намотаны на пластмассовых каркасах диаметром 25 мм. Ширина намотки 30 мм. Дроссель Др1 (рис. 5,а) содержат 150, а Др1 (рис. 5,б) - 100 витокв провода ПЭВ-2 1,04.

И в заключение хочется предупредить радиолюбителей, что использование описанного акустического агрегата целесообразно только в том случае, если полоса рабочих частот усилителя превышает 8-10 кГц. При меньшей полосе пропускания его применение становится неоправданным и малоэффективным.

Радио стр. 39-40, № 4, 1973 г.

Питер Мэпп

Выбирая акустическую систему для конкретного применения, следует учитывать множество факторов – механических, климатических, эстетических, акустических и электрических. Два последних можно объединить вместе под общим названием – электроакустические параметры. Именно под этим углом зрения рассматривается проблема выбора громкоговорителя в данной статье. К основным электроакустическим параметрам, которые необходимо принимать во внимание при определении или оценке пригодности устройства для данного применения, относятся частотная характеристика, акустическая мощность, диаграмма направленности, угол покрытия, направленность, чувствительность, импеданс, искажения и мощность. Существует также много других параметров (фазовая характеристика, компрессия мощности), и каждый заслуживает отдельной статьи, однако наша задача – дать о них лишь общее представление.

Следует отметить, что ни один из параметров не является определяющим при выборе громкоговорителя. Некоторые из них взаимосвязаны, другие являются взаимоисключающими, таким образом, выбор должен делаться с учетом множества факторов. Очень часто идеального устройства просто не существует, поэтому необходимо найти компромиссное решение – так же, как и при разработке, и изготовлении самого устройства. Хорошей отправной точкой для поиска могут стать частотная характеристика и полоса пропускания.

Частотная характеристика

Рис. 1. АЧХ акустической системы в разных масштабах
Полоса пропускания и частотная характеристика громкоговорителя оказывают наибольшее влияние на его звучание. Существует много определений и методов измерения частотной характеристики. Многие стандарты и методы рассчитаны на изделия класса Hi-Fi и им подобные и в некоторых случаях не совсем подходят для промышленных звуковых систем или систем общего назначения. Практически повсеместно под частотной характеристикой понимается осевая характеристика, измеренная на расстоянии 1 м. В случае крупногабаритных устройств расстояние может составлять 2 м и более. Однако для чувствительности всегда берется расстояние в 1 м.

Методы измерения изложены в ряде промышленных и международных стандартов, таких как AES и IEC. При проведении измерений могут использоваться такие сигналы, как гармонические колебания, розовый шум с полосой 1/3 октавы (или уже), белый шум (также с полосой 1/3 октавы или уже). MLS-сигналы, которые широко применяются в настоящее время, также попадают в эту категорию, поскольку их спектр фактически совпадает со спектром белого шума.

Форма представления данных в значительной степени стандартизована, тем не менее будьте осторожны – истинное звучание может оказаться совсем не таким, каким мы его представляли, глядя на график частотной характеристики. Пример тому показан на рис. 1. На первый взгляд, громкоговоритель, характеристика которого изображена на верхнем графике, может показаться предпочтительней, поскольку имеет более гладкую характеристику. Однако посмотрев на вертикальную шкалу, вы поймете, что кривые построены в разных масштабах. На самом деле оба графика относятся к одному и тому же громкоговорителю. Данные с высокой степенью подробности часто сглаживаются на графиках. И хотя такое представление данных позволяет показать вид кривой в целом, оно также может ввести в заблуждение, поскольку при этом оказываются скрытыми такие детали, как резонансные пики и спады характеристики, которые являются характерными признаками нежелательных резонансов, дифракции/интерференции звука в помещении или плохой настройки разделительных фильтров.

Частотная характеристика обычно снимается в безэховых условиях, если не указано иное. Поэтому снова убедитесь, что вы прочли подписи в паспорте АС, сделанные петитом. Хороший пример приведен на рис.2. На самом деле в данных производителя этой акустической системы отсутствует график частотной характеристики, но указано, что неравномерность составляет всего ±3 дБ. Однако, согласно написанному петитом, измерения являются усредненными для комнатных условий, что совсем не одно и то же, как видно из рис. 2.

Частотная характеристика обычно снимается на оси, совпадающей с основным направлением излучения. И хотя это дает хорошее представление о потенциально возможной характеристике в данном направлении, тем не менее в случае различных коммерческих систем и общественных систем оповещения большинство слушателей будет находиться под углом к этой оси. Поэтому для детальной оценки пригодности громкоговорителя необходима частотная характеристика, измеренная под различными углами к основной оси в пределах номинального угла покрытия с шагом 10–15°, которая изображается в виде семейства кривых. При работе в больших и сложных, с акустической точки зрения, помещениях полезно также использовать характеристики направленности. На рис. 3 представлены частотные характеристики для высококачественного контрольного громкоговорителя, снятые на основной оси и под разными углами к ней, которые показывают очень хороший результат.

Акустическая мощность

Характеристика излучаемой громкоговорителем акустической мощности (не путать с мощностью) – очень полезный, но редко указываемый параметр. Она показывает суммарную акустическую мощность, излучаемую на выходе. Хотя частотные характеристики, снятые в безэховых условиях, могут дать правдивую картину о потенциально возможных характеристиках в хороших акустических условиях и в пределах критического расстояния от громкоговорителя, однако в некоторых случаях, например в помещении с высоким временем реверберации или для распределенных систем в помещениях, многие слушатели вполне могут оказаться за пределами критического расстояния. Следовательно, поле реверберации становится преобладающим, что в большей степени зависит от суммарной излучаемой звуковой мощности, нежели от осевой частотной характеристики.

Мало кто из производителей указывает эти столь необходимые характеристики, и немногие из нынешних стандартов требуют их измерения, не говоря уж об их упоминании, тем не менее эта информация очень важна для точного расчета потенциальной разборчивости речи и быстрого определения вероятных характеристик поля реверберации. Нижняя кривая на рис. 3 является редким примером проведения подобного рода измерений. Существует масса споров и разногласий по поводу того, какова должна быть идеальная характеристика мощности. Очевидно одно – она должна быть гладкой и существенно плоской, возможно имеющей небольшой спад на высоких частотах. Обратите внимание – акустическая мощность обязательно станет параметром, значимость которого будет возрастать.

Характеристики направленности

После того как вы приняли решение о том, подходит ли вам данный громкоговоритель по своим частотным характеристикам, следующим шагом должна стать проверка характеристик направленности и углов покрытия. Для некоторых громкоговорителей систем оповещения часто указывается угол покрытия на одной частоте. Однако в реальной ситуации акустическое излучение громкоговорителя будет значительно меняться с частотой, а значит и угол покрытия также будет иметь сильную частотную зависимость. Характеристику направленности можно показать с помощью диаграмм направленности (рис. 4), измеренных на разных частотах и последовательно наложенных друг на друга. Однако если на одном рисунке будет очень много кривых, то изображение станет неразборчивым, особенно если кривые нарисованы в серых тонах. В настоящее время существует множество способов изображения, которые могут помочь в данной ситуации, например цветная печать. Но если не ограничить количество частот, то диаграммы будет трудно читать, особенно при малом масштабе изображения. Весьма удобным способом является изображение наложенных графиков в трехмерной системе координат (рис. 5). При расположении одной диаграммы над другой видна некоторая асимметрия в излучении, но без указателя с подписью трудно определить частоту конкретной кривой. На стеке диаграмм также наблюдается уменьшение угла покрытия с ростом частоты. Изменение угла покрытия для различных уровней ослабления (3, 6 и 9 дБ) показано на рис. 6, но рис. 7, вероятно, является наиболее информативным, где вдоль оси Х откладывается частота (нижняя часть графика), вдоль оси Y – угол покрытия. Цветом показан уровень затухания как функция от угла и частоты. На рис. 7 представлена характеристика направленности двухполосной акустической системы в вертикальной плоскости. При этом видно уменьшение угла покрытия с увеличением частоты (белая область резко сокращается при возрастании частоты примерно до 1 кГц и остается практически постоянной, когда начинает сказываться преобладание излучения CD-рупора). На частоте порядка 500 Гц наблюдается значительный боковой лепесток (белая часть рис. 7, указывающая вверх). В основе этого графика лежат базовые трехмерные диаграммы направленности, однако используется форма представления, обеспечивающая хорошую наглядность. Еще одним способом представления данных является изображение в виде трехмерной фигуры (рис. 8). В этом случае также виден вертикальный боковой лепесток. Построение трехмерной диаграммы направленности – задача сложная, связанная с обработкой больших объемов данных, но полученная полнота представления о характеристиках громкоговорителя стоит затраченных усилий. Более того, данные с высокой степенью подробности могут эффективно использоваться в таких программах по проектированию звуковых систем, как EASE, из которой и были взяты приведенные данные. В то же время двумерные диаграммы направленности все еще широко используются в тех случаях, когда надо быстро посмотреть, удовлетворяет ли покрытие конкретного устройства требованиям к работе вблизи. Диаграммы направленности могут строиться с различными разрешениями по частоте и углу. Некоторые стандарты предусматривают шаг по частоте в 1 октаву, однако сейчас становится нормой шаг в 1/3 октавы по частоте и 5° по углу. Возможно, что оптимальными являются диаграммы с шагом 1/3 октавы и октавными центрами на частотах 125, 250, 500 Гц, 1, 2, 4 и 8 кГц. Разрешение с шагом в одну октаву слишком грубое и может давать большую погрешность. В любых серьезных технических характеристиках должен присутствовать график зависимости ширины диаграммы направленности от частоты. Ширина диаграммы направленности громкоговорителя обычно берется по уровню -6 дБ. Ее часто путают с углом излучения, который используется в стандарте IEC на громкоговорители (IEC 60268-5). Это угол, при котором уровень падает на 10 дБ, что, конечно же, неприемлемо для коммерческих или профессиональных звуковых систем. Чтобы преодолеть эту проблему, IEC ввела понятие угла покрытия, который фактически является шириной диаграммы направленности по уровню -6 дБ, названной другим именем. Угол покрытия должен определяться на частоте 4 кГц, хотя могут указываться и другие частоты. Чем раньше мы придем к тому, что будем указывать угол покрытия для всего диапазона частот, тем лучше, поскольку немногие из производителей приняли вариант с частотой 4 кГц, а в тех случаях, где все же указывается угол покрытия на одной частоте (обычно в более дешевых моделях), чаще используется 1кГц.

Направленность и индекс направленности

Рис. 9. Фрагмент технических характеристик акустической системы, в котором приведены основные акустические параметры, необходимые при ее выборе
Величина направленности громкоговорителя Q определяется как отношение звукового давления, измеренного в заданной точке на основной оси, к звуковому давлению, которое создает в той же точке ненаправленный (точечный) источник, излучающий такую же акустическую мощность, как и громкоговоритель в условиях свободного поля. Индекс направленности Di равен 10 Log Q. При использовании Q для расчета предельной разборчивости часто забывают или не отдают себе отчета в том, что Q громкоговорителя меняется в зависимости от угла излучения. Следовательно, при расчетах в направлении, отличном от основного направления излучения, должны использоваться другие значения Q. На рис. 9 показан фрагмент технических характеристик громкоговорителя, в котором приведены главные акустические параметры, необходимые при выборе громкоговорителя.

Импеданс

Импеданс громкоговорителя – еще одна очень важная характеристика. Он также имеет сильную частотную зависимость, следовательно его график должен приводиться всегда. Удивительно, как много восьмиомных громкоговорителей в действительности не являются таковыми. А когда используются линейные согласующие трансформаторы на 70 и 100 В, частотная характеристика еще более необходима. Хотя в большинстве случаев комбинация громкоговоритель + трансформатор будет обеспечивать нормальную нагрузку на 1 кГц, на более низких частотах этого может не быть. В табл. 1 приведены результаты недавнего тестирования небольших громкоговорителей для системы оповещения, проведенного в лаборатории (линия 100 В). На рис. 10 показан график импеданса громкоговорителя с плохим согласованием.

Даже в тех случаях, когда трансформатор не используется, необходимо знать, как данный громкоговоритель нагружает усилитель. И хотя величина импеданса по модулю обычно приводится, и этого требуют стандарты, фазовая характеристика также должна указываться, чтобы гарантировать, что нагрузка, которую мы собираемся подключать, не окажет вредного воздействия на работу усилителя возбудителя.

Чувствительность

Чувствительность громкоговорителя по напряжению часто путают с эффективностью. Чувствительность обычно определяют как уровень звукового давления, измеренный на основной оси на расстоянии 1 м при подаче на вход 1 Вт (например, 90 дБ, 1 Вт / 1 м). Измерения проводятся в безэховых условиях или в условиях свободного поля. В действительности рассеивается не вся мощность в 1 Вт, поскольку не только импеданс будет меняться с частотой, но и фаза, которая не принимается во внимание. Для восьмиомного громкоговорителя мощность в 1 Вт номинально эквивалентна напряжению возбуждения в 2,83 В (P=E2/R), и эта величина часто приводится.

Будьте внимательны, поскольку указанное напряжение возбуждения также иногда используется с четырех- омными громкоговорителями. В этом случае эквивалентная входная мощность равна 2 Вт, что может дать ошибочное увеличение чувствительности на 3 дБ. Напряжение возбуждения должно быть 2 В. Реальное значение чувствительности будет зависеть от ширины полосы пропускания системы или ширины полосы подаваемого сигнала.

И опять будьте осторожны при сравнении громкоговорителей и при проведении расчетов, поскольку общепринятой ширины полосы не существует. Могут приводиться значения чувствительности для однополосных или, что еще хуже, для одночастотных сигналов. Эти значения будут выше, чем для широкодиапазонных сигналов.

Чувствительность также зависит от гладкости частотной характеристики и от эффективного диапазона частот рассматриваемого устройства. Эффективный диапазон частот определяется как "диапазон частот, ограниченный указанными верхним и нижним пределами, в котором частотная характеристика громкоговорителя, измеренная на основной оси с использованием гармонических (или эквивалентных) сигналов, уменьшается не более чем на 10 дБ от уровня звукового давления, усредненного в полосе в 1 октаву или более (определяется производителем) в области максимальной чувствительности." При определении частотных пределов малыми провалами на частотной характеристике, которые уже 1/9 октавы по уровню -10 дБ, пренебрегают. И хотя это определение прекрасно подходит для высококачественных изделий с номинально плоскими характеристиками, оно может не подходить для многих систем PA и тревожной сигнализации, и устройства, имеющие характеристику с выраженными пиками, могут получить очевидное преимущество.

Возьмем к примеру громкоговоритель, характеристика которого приведена на рис. 11. Определение чувствительности в этом случае оказалось делом довольно сложным, особенно из-за того, что импеданс непостоянен. Официально указывается чувствительность в 88 дБ. Способы измерения и оценки чувствительности, частотной характеристики и рабочего импеданса данных типов устройств нуждаются в дальнейшей проработке, исследованиях и стандартизации.

Мощность

Рис. 11. Пример АЧХ акустической системы
Номинальная мощность громкоговорителя также таит в себе массу подвохов. Результаты измерений зависят от типа испытательного сигнала, пик-фактора, ширины полосы сигнала и длительности испытания. Часто используются разные типы мощности (среднеквадратическая, программная или музыкальная). По логике вещей, должен применяться сигнал, имитирующий реальные сигналы, которые встречаются в жизни и могут использоваться в данной системе. Это сигналы типа розового шума с ограниченной полосой или белого шума с определенным пик-фактором (отношение пикового значения сигнала к среднему значению, обычно оно составляет 6 дБ). Путем длительного воздействия сигнала со средним уровнем проверяется температурная стойкость громкоговорителя. Кратковременные пиковые сигналы проверяют его механическую надежность (отклонение диффузора и диафрагмы). Длительность испытаний может меняться, но обычно она составляет 8 ч.

Наряду с измерением мощности необходимо измерять коэффициент компрессии мощности. При нагреве катушки громкоговорителя выходная мощность может значительно уменьшаться. При этом компрессия возрастает с увеличением подводимой мощности. Обычно коэффициент компрессии находится в пределах 0,5–4,5 дБ. Следовательно, когда мы берем чувствительность данного громкоговорителя для рассеиваемой мощности 1 Вт на расстоянии 1 м и используем максимально допустимое значение мощности для расчета соответствующего максимального уровня звукового давления, то можем получить огромную ошибку.

Альтернативные испытания по определению мощности заключаются в том, что на вход подается высокое напряжение на короткий и на длительный срок и определяется то максимальное входное напряжение, которое громкоговоритель может выдержать без повреждения. В краткосрочных испытаниях применяется специальный сигнал (так называемый program-shaped noise), который подается на 1 с 60 раз с интервалом между двумя подачами в 1 мин. В долгосрочных испытаниях сигнал подается на 1 мин с интервалом в 2 мин. Испытания повторяются 10 раз (IEC 60268-5).

Искажения

Искажения являются параметром, который часто не включается в технические характеристики, но важен для оценки нелинейности характеристик устройства и субъективного качества звучания. Существуют различные методы измерения разных видов искажений, включая суммарные гармонические искажения (THD), выборочные (например, вторая и третья гармоники) и интермодуляционные. Для определения некоторых тонких моментов, например, влияния материалов, из которых изготовлены диффузор и драйвер, начинают широко использоваться другие методики, такие как многочастотное возбуждение (multi sine-wave excitation).

Нужно быть чрезвычайно осторожным при сравнении результатов, поскольку разные производители используют в испытаниях разные уровни (мощности) в драйверах. Могут приводиться данные как по суммарным гармоническим искажениям, так и по второй и третьей гармоникам. Вообще говоря, вторая гармоника указывает на проблему асимметрии, в то время как третья гармоника, которая обычно более нежелательна с точки зрения субъективного качества звучания, говорит о наличии эффекта лимитирования в устройстве.

Искажения зависят от уровня сигнала. В табл. 2 в качестве примера приведены данные для высококачественной двухполосной акустической системы с 12-дюймовым НЧ-динамиком и CD-рупором. Номинальная мощность – 300 Вт.

При выборе громкоговорителя для конкретного применения многие характеристики заслуживают того, чтобы их приняли во внимание. Поэтому убедитесь, что исследовали все характеристики, которые непосредственно относятся к вашему случаю.

Питер Мэпп – независимый консультант в области акустики и разработки звуковых систем в Великобритании. С ним можно связаться по электронной почте: [email protected] .

Благодарим журнал “Sound&Video Contractor” за предоставленный материал. P.O. Box 12901, Overland Park, KS 66282-2901, www.svconline.com

Ирина Алдошина

Дата первой публикации:

окт 2008

Корпуса акустических систем. Конструкции.

В предыдущих статьях были рассмотрены конструкции различных видов излучателей, которые являются основными элементами всех видов акустических систем. Однако неотъемлемой частью любой акустической системы является также корпус.

Корпус (рис. 1) выполняет многообразные функции. В области низких частот он блокирует эффект "короткого замыкания", возникающий за счет сложения излучаемого звука от передней и тыловой поверхностей диафрагмы в противофазе, что приводит к подавлению низкочастотного излучения. Применение корпуса позволяет увеличить интенсивность излучения на низких частотах.

Кроме того, он увеличивает механическое демпфирование громкоговорителей, что позволяет "сгладить" резонансы и уменьшить неравномерность амплитудно-частотной характеристики. Корпус оказывает существенное влияние не только в области низких, но и в области средних и высоких частот за счет дифракционных эффектов и за счет колебаний стенок корпуса, что, естественно, вносит существенный вклад в увеличение линейных и нелинейных искажений и в качество звучания акустических систем. Именно поэтому вопросам проектирования корпусов акустических систем (выбору конфигурации, материала стенок, вибродемпфирующих и виброизоляционных покрытий и т. д.) все фирмы-производители уделяют большое внимание.

Наиболее распространенными типами низкочастотного оформления в конструкциях современных корпусов акустических систем являются: бесконечный экран (infinitive baffle), закрытый корпус (closed box, acoustical suspensions, sealed box), корпус с фазоинвертором (vented-box, ported-box, bass-reflection и др.), лабиринт (labyrinth), трансмиссионная линия (transmission-line), корпус с симметричной нагрузкой (bandpass enclosure), с пассивным радиатором (passive radiator, drone cone) и др.

Остановимся на конструкции наиболее известных из них.

Бесконечный экран
Этот тип оформления должен удовлетворять двум условиям: представлять бесконечно большую поверхность, в которой установлен громкоговоритель, и иметь большой объем воздуха позади нее. Максимальным приближением к такому оформлению является установка громкоговорителя в стене комнаты с достаточно большим объемом за ним. Только при выполнении обоих условий обеспечивается полное предотвращение эффекта короткого замыкания и эффекта демпфирования колебаний со стороны воздушного объема.

Частотная характеристика громкоговорителя в таком "истинно бесконечном экране" зависит от значения его резонансной частоты и спадает со скоростью 12 дБ/окт. Следует, правда, отметить, что отсутствие демпфирования при установке громкоговорителя в такой вид оформления приводит к эффекту "бубнения" на низких частотах (особенно слышимому у громкоговорителей больших размеров).

Использование плоских экранов конечных размеров или "свернутых" экранов (то есть экранов с согнутыми краями - открытых корпусов) в качестве низкочастотных оформлений было довольно широко распространено в начальный период развития производства выносных акустических систем в 30-50 годы. Однако это приводило к созданию акустических систем с очень большим объемом корпуса (600-800 куб. м), поскольку минимальный размер, при котором не будет короткого замыкания, определяется соотношением: 2L = l/2, где L - расстояние от центра до края экрана, l - длина волны. Например, для частоты 100 Гц, где длина волны l = 3,4 м, величина L составляет 0,85 м.

Если экран свернуть, то есть перейти к открытому оформлению, то его размер можно уменьшить только процентов на тридцать. В противном случае получаются слишком длинные боковые стенки (типа трубы), в которых возникают резонансные явления, и явление дифракции на открытых краях, окрашивающее звук. Поэтому в выносных акустических системах такие типы оформлений практически не используются, хотя встроенные в стены АС применяются достаточно часто, особенно в аппаратных студий звукозаписи (они называются "in-wall", "in-ceiling infinitive baffle", "wall-mount panel" и т. д.).

Термин "infinitive baffle" употребляется иногда также для оформлений типа "закрытый ящик" достаточно больших размеров, в которых не происходит сдвига резонансной частоты громкоговорителя по сравнению с излучением в свободное пространство (при этом отношение гибкости подвеса к гибкости воздуха должно быть меньше, чем 3).

Закрытый корпус
В период значительного увеличения объемов массового производства выносных акустических систем, то есть примерно в пятидесятые годы, начали активно применяться закрытые корпуса "компрессионного" типа, что позволило значительно уменьшить размеры АС, сделать их удобными для применения в жилых комнатах и при этом сохранить воспроизведение низкочастотной части диапазона (рис. 2).

Принцип работы компрессионного оформления состоит в том, что в нем используются громкоговорители с очень гибким подвесом и большой массой, то есть низкой резонансной частотой. В этом случае упругость воздуха в корпусе становится определяющим фактором. Именно она начинает вносить основной вклад в восстанавливающую силу, приложенную к диафрагме (при этом отношение гибкости подвеса к гибкости воздуха должно быть не меньше, чем 3...4). Поскольку воздух - среда линейная (при относительно малых уровнях звукового давления), то это позволяет, кроме возможности уменьшить объем корпуса, уменьшить также нелинейные искажения.

Низкочастотные громкоговорители для таких систем должны проектироваться особым образом (иметь большую гибкость подвеса, большую массу диафрагмы, особую конструкцию звуковой катушки и магнитной цепи для обеспечения больших смещений и т. д.). Теория проектирования закрытых корпусов была изложена в работах Small-Thiele, в настоящее время их проектирование производится с помощью компьютерных программ.

При правильно подобранных электромеханических параметрах громкоговорителей и корпуса в акустических системах такого типа можно получить максимально гладкую форму АЧХ (рис. 3) на низких частотах, обеспечить чистое, сухое звучание басов. Именно поэтому многие ведущие фирмы (например, KEF, Tannoy и др.) при создании акустических систем категории Hi-Fi и контрольных агрегатов применяют корпуса закрытого типа.

Корпус с фазоинвертором
Это корпус, в котором сделано отверстие, что позволяет использовать излучение тыльной поверхности диффузора (рис. 4). Максимальный эффект достигается в области частоты резонанса колебательной системы, образуемой массой воздуха в отверстии или трубе и гибкостью воздуха в корпусе.

Наличие небольшого отверстия не нарушает компрессионного принципа работы громкоговорителя в корпусе, но дает возможность значительно увеличить уровень звукового давления на частоте резонанса (сравнительная форма АЧХ в области низких частот показана на рис. 3), уменьшить уровень нелинейных искажений, значительно расширить возможности настройки параметров акустической системы. Следует отметить, что наличие фазоинвертора требует значительно большего искусства при проектировании, так как неточная настройка приводит к появлению переходных искажений ("затянутых басов").

В современных моделях используются несколько разновидностей фазоинверсных систем.

1. Корпус со специальной трубой , нагруженной на отверстие (ducted port enclosures) - это позволяет уменьшить размеры корпуса и с помощью изменения размеров трубы улучшить настройку фазоинвертора (рис. 4а).

2. Корпус с пассивным излучателем (passive radiator, рис. 5); в отверстие корпуса устанавливается пассивный (то есть без магнитной цепи) громкоговоритель, колебания которого возбуждаются за счет колебаний объема воздуха, заключенного в корпус. Регулируя массу и гибкость такого громкоговорителя, можно получать такой же эффект, как и при настройке фазоинвертора.

3. Лабиринт (labyrinth, рис. 6) представляет собой вариант низкочастотного корпуса с фазоинвертором, в котором устанавливаются специальные перегородки, создающие своего рода лабиринт для потока воздуха. Когда длина лабиринта достигает 1/4 длины волны на частоте резонанса низкочастотного громкоговорителя, он действует аналогично соответствующим образом настроенному фазоинвертору. Применение лабиринта расширяет возможности для настройки на более низкие частоты. Лабиринт обычно имеет серию резонансных пиков на гармониках, соответствующих основной резонансной частоте трубы. Они демпфируются размещением специальных звукопоглощающих материалов на стенках корпуса.

4. Трансмиссионная линия (transmission line) является вариантом лабиринта. В современных конструкциях акустических систем используются ее многочисленные разновидности: четвертьволновая (quarter wave), первого порядка (first order), с переменным сечением (tapered), трапецеидальная (trapezoidal) и т. д.

Трансмиссионная линия отличается от лабиринта тем, что звукопоглощающим материалом забивается весь объем корпуса, и поперечное сечение линии делается переменным - больше у конуса, меньше у отверстия. Звукопоглощающий материал подбирается таким образом, чтобы обеспечить демпфирование высокочастотных резонансов. Корпуса такого типа очень сложны для настройки, поэтому существуют их упрощенные варианты (типа "tapered pipe"), в которых используется просто труба переменного сечения с обратным соотношением площадей: больше у диффузора, меньше у отверстия с заполнением объемным поглотителем.

5. Фазоинверсное оформление с двойной камерой (double-chamber, рис. 7) или с несколькими камерами (multichamber port). Применение двойных или нескольких камер позволяет обеспечить согласование нагрузки с низкочастотным громкоговорителем в значительно более широком диапазоне частот. На амплитудно-частотной характеристике такой системы отчетливо видны два резонансных пика: один соответствует настройке низкочастотного громкоговорителя на полный объем двух камер, другой - на одну камеру; если эти камеры равных объемов, то эти частоты разделены ровно на октаву.

Обычно двойная камера имеет одно отделение в два раза больше другого. Оформления с двойными камерами обеспечивают большее демпфирование колебаний громкоговорителей, что дает значительные преимущества при использовании их в мощных акустических системах, например, для дискотек, музыкальных ансамблей и др., так как снижает вероятность перегрузки и выхода из строя низкочастотных громкоговорителей.

6. Оформления типа полосовых фильтров (bandpass systems, рис. 8) - это также разновидность фазоинверсных систем, в которых громкоговоритель установлен внутри закрытого корпуса и излучает не прямо в окружающую среду, а через корпус с фазоинверсным отверстием. Применение таких систем позволяет регулировать спад АЧХ не только в сторону низких частот, но и в сторону высоких частот (то есть действует подобно полосовому фильтру). Подбирая размеры и тип камеры (закрытый, с фазоинвертором, "двойным фазоинвертором" и др.), можно менять крутизну спада АЧХ, поэтому по аналогии с фильтрами их называют "полосовыми" оформлениями. Например, полосовое оформление четвертого порядка содержит переднюю камеру с фазоинвертором, заднюю - закрытую, скорость спада при этом в сторону высоких частот 24 дБ/окт, то есть соответствует фильтру четвертого порядка; полосовое оформление шестого порядка имеет обе камеры с фазоинвертором, при этом спад - 36 дБ/окт.

Если в корпусе установлены два одинаковых громкоговорителя на один фазоинвертор, то это называется "низкочастотное оформление с симметричной нагрузкой" (если громкоговорители включены в противофазе, то такое соединение называется "push-pull"). Такого типа оформления часто используются в настоящее время в низкочастотных блоках (субвуферах), которые широко применяются в аппаратуре для домашнего кинотеатра и др.

В этих же блоках используются двойные оформления (типа Isobarik), когда два низкочастотных громкоговорителя нагружены на закрытую дополнительную камеру. Один работает на внутренний объем (закрытый или с фазоинвертором), другой излучает во внешнюю среду - это позволяет снизить частоту среза, уменьшить уровень гармоник, особенно четных, и уменьшить общий объем системы (рис. 9).

7. Рупорное оформление (horn) используется как "акустический трансформатор", обеспечивающий улучшение условий согласования (то есть повышающий акустическое сопротивление) громкоговорителя со средой. Это позволяет существенно (в три и более раза) увеличить КПД акустической системы и улучшить характеристики направленности. Однако для низких частот размеры рупора получаются слишком большими, поэтому в некоторых мощных акустических системах используются свернутые рупоры (folded horn, рис. 10), иногда со специальными компрессионными камерами, что позволяет получать большие уровни звукового давления на низких частотах.

Кроме перечисленных, наиболее распространенных видов оформлений, в каталогах, журналах, рекламах упоминаются и другие.

Теория расчета основных видов низкочастотных оформлений глубоко проработана и практически полностью переведена на компьютерные методы. Приближенные методы расчета будут приведены в следующей статье.

Вопрос о достоинствах и недостатках каждого вида оформлений довольно сложен, конкретный выбор зависит от назначения и спецификации данной акустической системы.

Влияние формы корпуса на АЧХ
В области средних и высоких частот существенное влияние на форму амплитудно-частотной характеристики и качество звучания акустических систем оказывает внешняя конфигурация корпуса (то есть его форма, наличие отражающих выступов и впадин, характер округления углов ширина и степень демпфирования его передней стенки и пр.), что обусловлено влиянием дифракционных эффектов. В последние годы, когда параметры высококачественных акустических систем существенно улучшились, вклад дифракционных эффектов в общий уровень искажений стал более заметен, поэтому анализу их влияния на выходные характеристики акустических систем посвящены многочисленные исследования.

Результаты расчетов и эксперименты показали, что использование корпусов со сглаженными углами, обтекаемой формы (в виде сфер, эллипсоидов, цилиндров и др.), с несимметричным расположением громкоговорителей значительно уменьшает неравномерность АЧХ и снижает фазовые искажения (рис. 11).

Однако в связи с тем, что технология изготовления таких корпусов значительно сложнее и дороже, подавляющее большинство акустических систем выпускается в корпусах прямоугольной формы. При этом применяются специальные меры для уменьшения дифракционных эффектов на углах передней панели: специальное заглушение панели, оптимизация соотношения размеров передней панели и глубины корпуса, подбор несимметричного расположения громкоговорителей и др.

Стремление сдвинуть дифракционные пики-провалы на АЧХ в более высокочастотную область и тем самым снизить их влияние, заставляет использовать максимально узкие передние панели (насколько позволяют размеры низкочастотного громкоговорителя). Современная техника цифровых измерений дает возможность количественно оценить вклад дифракционных эффектов в общий уровень неравномерности АЧХ (он может достигать 4 дБ) и рассчитать искажения ГВЗ (до 0,5 мс). Полученные значения оказались достаточно высоки, что заметно сказывается на качестве звучания, поэтому сложные внешние конфигурации многих современных акустических систем обусловлены не только эстетическими соображениями, но и стремлением улучшить их параметры и качество звучания.

Влияние вибрации корпуса на АЧХ
Корпус акустической системы в области средних и высоких частот вносит также значительные искажения в воспроизводимый сигнал из-за колебаний стенок корпуса и заключенного в них объема воздуха. Это приводит к изменению формы АЧХ: снижению уровня звукового давления на низких частотах и увеличению неравномерности на средних; возрастанию нелинейных искажений и увеличению переходных процессов, что ухудшает качество звучания акустических систем, внося так называемые "ящичные" (boxes) призвуки.

Анализ механизмов возникновения звукоизлучения из-за вибраций стенок корпуса показывает, что существуют два пути передачи колебаний от громкоговорителя к стенкам корпуса:
- возбуждение колебаний внутреннего объема воздуха в корпусе от тыльной поверхности диафрагмы и передача через него колебаний на стенки корпуса;
- прямая передача вибраций от диффузородержателя на переднюю стенку, а от нее на боковые и на заднюю.

В области частот примерно до 600 Гц существенный вклад вносят оба механизма передачи, на более высоких частотах в основном играет роль второй механизм. Для уменьшения влияния этих явлений используют различные конструктивные меры, а также различные способы звуко- и виброизоляции и поглощения.

Для уменьшения передачи колебаний за счет внутреннего объема корпуса и демпфирования его внутренних резонансов применяют различные методы звукопоглощения: обычно корпус полностью или частично заполняется тонковолокнистыми упругопористыми материалами (синтетические волокна, минеральная вата и др.).

Для увеличения коэффициента поглощения в области низких частот необходимо увеличивать толщину и плотность заполнения. Однако чрезмерное заполнение корпуса звукопоглощающим материалом может привести к снижению уровня звукового давления на низких частотах и к излишней "сухости" басов. Рекомендуемая плотность заполнения составляет 8-11 кг на куб. м. За последние годы создано новое поколение звукопоглощающих материалов, обеспечивающих эффективное демпфирование резонансных колебаний внутреннего объема в заданной области частот. В некоторых моделях используются перфорированные и сотовые панели поглотителей внутри корпуса. Внесение поглотителя значительно снижает неравномерность АЧХ.

Для уменьшения колебаний стенок корпуса необходимо применение мер, направленных на увеличение его звукоизолирующей способности. Звукоизолирующая способность корпуса акустической системы состоит в следующем: часть звуковой энергии, излучаемой внутрь корпуса диафрагмой громкоговорителя, поглощается в слоях звукопоглощающего материала, часть попадает на стенки корпуса.

В стенках происходят следующие процессы: некоторая доля энергии возвращается обратно внутрь корпуса, другая рассеивается в материале стенок из-за потерь на трение и остаточную деформацию, третья проходит в окружающую среду за счет упругих продольных и поперечных колебаний стенок и через щели и поры в материале. Задача выбора конструкций стенок корпуса состоит в том, чтобы максимально увеличить коэффициент звукоизоляции, то есть уменьшить долю прошедшей энергии по отношению к падающей.

Коэффициент звукоизоляции существенно зависит от жесткости и массы стенок. Поэтому для уменьшения общего уровня звукоизлучения от стенок (то есть для повышения их звукоизоляции) применяются различные меры для повышения их жесткости и массы.

1. Использование для стенок тяжелых и жестких материалов: кирпича, мрамора, пенобетона и др. Эффект звукоизоляции получается очень хороший (до 30 дБ и более), соответственно улучшается качество звучания акустических систем. Но такие корпуса оказываются слишком тяжелыми и дорогими для широкого применения, что затрудняет их изготовление и эксплуатацию. Поэтому в качестве материалов для корпусов обычно используются: многослойная фанера, древесностружечная плита (ДСП), древесноволокнистая плита (ДВП) и др. (толщина фанеры для боковых стенок выбирается в пределах 18...20 мм, для лицевых - 20...40 мм).

2. Применение многослойных материалов из слоев различной жесткости и плотности, что позволяет существенно уменьшить колебания стенок.

3. Использование специальных вибропоглощающих покрытий стенок корпуса. В зависимости от диапазона резонансных частот стенок выбираются "жесткие", "мягкие" или армированные покрытия.

4. Применение конструктивных мер: ребер жесткости, стяжек, распорок между стенками, разделение корпуса на отдельные отсеки и т. д.

Анализ второго способа возбуждения колебаний стенок корпуса показывает, что при колебаниях подвижной системы громкоговорителя возбуждаются колебания диффузородержателя, которые передаются на переднюю панель. Затем возникают интенсивные продольные колебания боковых стенок, которые передают вибрации на заднюю и верхние панели.

В области низких частот стенки корпуса колеблются синфазно. В этой области уровень виброускорения на стенках (а, следовательно, и уровень звукоизлучения от них) определяется их общей упругостью и упругостью заключенного в них объема воздуха. По мере повышения частоты начинаются интенсивные изгибные колебания всех стенок корпуса, амплитуды которых имеют максимальные значения на резонансных частотах. Измерения виброускорения на стенках корпусов показывают, что наибольшие амплитуды вибраций имеют место на передней и задней стенках, затем на верхней и боковых. Общая картина распределений на стенках корпуса показана на рис. 12.

Для борьбы с прямой передачей вибраций применяют методы виброизоляции и вибропоглощения. Эффект виброизоляции обеспечивается применением упругих амортизаторов при креплении громкоговорителя к корпусу, а иногда и передней стенки корпуса к боковым. При конструировании высококачественных акустических систем применяют сплошные резиновые прокладки между диффузородержателем и передней панелью, локальные опорные виброизоляторы для крепления винтов, амортизирующие прокладки для крепления передней панели к боковым, развязку диффузородержателя от передней панели за счет дополнительной опоры его на дно и т. д. Все эти меры позволяют уменьшить передаваемый уровень вибрации на боковые и задние стенки корпуса на 10...11 дБ.

В современных высококачественных акустических системах корпус представляет собой чрезвычайно сложную и дорогостоящую конструкцию (рис. 13). В качестве критерия эффективности принятых мер по звукоизоляции корпуса принято считать разницу между уровнем звукового давления, излучаемого стенками корпуса, и уровнем звукового давления от акустической системы в целом, она должна составлять не менее 20 дБ.

Кроме объективных измерений при проектировании проводится прослушивание акустических систем в корпусах различной конструкции, результаты которых подтверждают большое влияние корпуса на объективные и субъективные характеристики акустических систем.

Обычно в радиолюбительской и профессиональной литературе акустические системы рассматриваются в плане получения максимально широкой полосы воспроизводимых частот и минимальных искажений, то есть с точки зрения улучшения звучания. Нам эти аспекты также важны, но нужна еще максимальная отдача акустической системы, то есть максимальный КПД преобразования электрической мощности в акустическую.

Динамическая головка без акустического оформления имеет очень низкую отдачу и совсем плохо воспроизводит нижние частоты звукового спектра. Объясняется это просто: при поступательном движении диффузора воздух просто перегоняется с передней стороны диффузора на заднюю и обратно, происходит так называемое акустическое короткое замыкание, и лишь малая доля энергии превращается в звуковую волну.

Простейший способ устранить акустическое короткое замыкание - установить головку на плоский экран или «отражательную доску» достаточно больших размеров. Каких? Его размер должен достигать хотя бы четверти длины волны на низшей звуковой частоте. Зная скорость звука в воздухе (v = 330 м/с) длину волны легко сосчитать: λ = v / f. Даже для низшей частоты 100 Гц размер акустического экрана составит около метра. Теперь становится понятным, почему маленькие транзисторные приемники не могут воспроизводить нижних звуковых частот!

Идеальный акустический экран - перегородка между двумя комнатами или между комнатой и верандой. Если туда врезать динамическую головку, то будут озвучиваться оба помещения, причем с хорошим качеством. Правда, акустическая мощность поделится между помещениями пополам и звук будет тише. Чаще надо озвучивать лишь одну комнату, тогда экран целесообразно установить под потолком, как показано на рис. 3.1. Там он никому не будет мешать и вокруг головки можно создать значительный объем, что улучшит воспроизведение нижних частот, к тому же потолок и стены образуют своеобразный рупор.

Экран можно изготовить из фанеры, ДСП и даже оргалита. К потолку и стенам он должен прилегать плотно, без щелей (можно уплотнить стыки поролоном или ватой), это позволит существенно уменьшить все размеры, кроме одного - от головки до отверстия. Оно образует фазоинвертор - систему, позволяющую улучшить отдачу на нижних частотах, используя излучение и обратной стороны диффузора. Пройдя путь l, звуковая волна изменит фазу, и при условии l = λ /2 фаза изменится на обратную (инвертируется) и сложится с волной, излучаемой передней стороной диффузора. Площадь отверстия желательно выбрать не меньше, чем площадь диффузора головки.

Если края плоского прямоугольного экрана отогнуть назад, получится всем хорошо знакомый корпус радиоприемника, телевизора и т.д. Это АС с открытой задней стенкой. Она также звучит лучше в углу комнаты, причем расстояние от стен целесообразно подобрать по наилучшей громкости и качеству звука. Открытую АС очень легко сделать из корпуса старого телевизора - изготовить надо только отражательную доску из ДСП, установить на нее от 2 до 8 головок, обтянуть редкой материей и установить на место передней панели. И смотрится и звучит такое изделие очень неплохо (рис. 3.2а). Головки на отражательной доске лучше размещать асимметрично, тогда пики и провалы амплитудно-частотной характеристики (АЧХ) несколько выравниваются.

Устанавливать в АС несколько головок, даже разных, имеет смысл по нескольким соображениям: звуковые давления отдельных головок складываются, поэтому отдача АС возрастает, но пики и провалы на АЧХ отдельных головок не совпадают, как не совпадают и механические резонансные частоты, и общая частотная характеристика выравнивается. Схему включения головок надо подобрать так, чтобы выделяющаяся на них мощность была пропорциональна паспортной. Полярность включения головок также очень важна: при подаче на АС постоянного напряжения (например, от гальванического элемента) все диффузоры должны двигаться в одну сторону, что соответствует синфазному включению. Хотя бы одна головка, работающая в противофазе, резко понижает отдачу.

В качестве примера на рис. 3.2б показана схема включения семи динамиков: двух 4ГД-35 (4 Вт, 4 Ом), трех 1ГД-40 (1 Вт, 8 Ом) и двух высокочастотных («пищалок») 2ГД-36 (2 Вт, 8 Ом). Для расчета мощности, выделяющейся на каждой головке, приложите мысленно к зажимам АС какое-нибудь удобное для расчетов напряжение, например 8 В. Тогда ток в цепи мощных головок будет 1 А, в цепи трех одноваттных 1/3 А и в цепи высокочастотных (только на высоких частотах) - 1/2 А. Мощность, выделяющаяся на каждой головке (Р = I 2 R) составит 4 Вт для мощных, 0,9 Вт для одноваттных и 2 Вт для высокочастотных, что вполне приемлемо. Емкость конденсатора фильтра, пропускающего к «пищалкам» только высокие звуковые частоты, находим по формуле С = 0,16 / f . R, где f - частота среза, R - общее сопротивление ВЧ-головок. Задавшись параметрами 6,5 кГц и 16 Ом, получаем С = 1,5 мкФ. Общее сопротивление АС получается равным 6 Ом, несколько уменьшаясь на высоких частотах.

Если есть возможность изготавливать АС разной конструкции, то несколько динамиков лучше размещать вертикально, друг над другом, чтобы концентрировать излучение в горизонтальной плоскости, на уровне голов слушателей (рис. 3.3а). ВЧ динамики лучше размещать именно на этой высоте, в середине, а мощные низкочастотные - по краям колонны, поскольку направленность излучения на нижних частотах меньше. Установка колонны в угол комнаты повышает отдачу (рупорный эффект) и позволяет изготавливать лишь одну отражательную доску. В углах у потолка и пола можно попробовать установить треугольные листы фанеры или пластика - «акустические зеркала», отражающие излучение обратной стороны АС к слушателям (рис. 3.3б).

В последние годы российский рынок заполнен зарубежной звуковоспроизводящей аппаратурой. Однако продукция ведущих фирм, обеспечивающая, действительно, высокое качество звучания, стоит весьма дорого, а относительно дешёвые и доступные россиянам импортные мини и мидиакустические системы звучат весьма посредственно и не могут удовлетворить запросы любителей хорошего звучания.

Что касается отечественной промышленности, то она пока не радует слушателей новыми разработками головок громкоговорителей и акустических систем (АС) высокого класса. Авторы публикуемой статьи предлагают нашим читателям самостоятельно изготовить двухполосную АС, реализующую новый подход к получению пространственного звучания. Аналогичной идеологии в конструировании АС придерживается в некоторых своих разработках, например, американская фирма «Боус».

Прежде чем приступить к описанию конкретной АС, познакомимся с некоторыми аспектами проблем их конструирования. Прежде всего, рассмотрим характеристики направленности излучения звука обычной АС, головки которой смонтированы на её передней панели. В области низких частот звукового диапазона любая АС не имеет выраженной характеристики направленности, поскольку длина звуковых волн превышает геометрические размеры корпуса, и они его огибают. По этой причине звуковое давление на низких частотах будет примерно одинаковым в любой точке вокруг АС. С повышением частоты звук излучается преимущественно в переднее полупространство, причём на высших частотах звукового диапазона характеристика направленности настолько сужается, что для их восприятия слушатель должен располагаться в пределах относительного небольшого телесного угла напротив высокочастотной головки громкоговорителя. Помимо этого, на частотах разделения многополосных АС характеристика их направленности претерпевает и более сложную деформацию.

Чтобы понять, почему нужна широкая характеристика направленности АС, зададимся вопросом о форме этой характеристики реальных музыкальных инструментов. В доступной технической литературе таких данных почти нет. Очевидно, бессмысленно говорить о формировании характеристики направленности звукоизлучения целого оркестра, поскольку звук излучается в этом случае практически во все стороны. Исходя из этих соображений, вполне обоснованными выглядят попытки разработчиков создать акустическую систему, имеющую круговую характеристику направленности в горизонтальной плоскости для всего рабочего диапазона частот.

Рис.1. Внешний вид акустической системы

Один из возможных и наиболее простых вариантов конструкции такой АС и предлагается для самостоятельного изготовления. Она состоит из низко-среднечастотной головки 25ГДН-3-4 и высокочастотной 10ГДВ-2-16. Обе головки смонтированы в верхней части корпуса АС таким образом, что их рабочие оси расположены вертикально. Над головками вершинами вниз установлены звукорассеивающие элементы, изготовленные в виде большого и малого конусов. Эти конусы отражают звуковые волны во все стороны в горизонтальной плоскости, причём имеет место и огибание ими конусов. Низко-среднечастотная головка смонтирована в отверстии верхней стенки корпуса АС, а высокочастотная — в специальном углублении основания большого конуса. В дне корпуса просверлено 16 фазоинверторных отверстий диаметром 11 мм, которые заклеены изнутри одним слоем марли (рис. 2). Фазоинвертор настраивают путём подбора высоты резиновых ножек, прикреплённых по углам дна корпуса с его наружной стороны. Рекомендуемая высота ножек- 6 мм. Туннель фазоинвертора образуется при установке АС на любую гладкую и твёрдую поверхность (стол, полку и т. д.). Для нормальной работы фазоинвертора площадь опорной поверхности должна быть как минимум равной конфигурации дна АС. Рабочее положение АС — только вертикальное; устанавливать её желательно на расстоянии 30…50 см от ближайшей стены, но никак не в нишах мебельных стенок. Корпус АС герметичен. Он склеен из заготовок ДСП толщиной 16 мм. Боковые стенки изнутри покрыты простёганными ватными матами толщиной 40 мм. Габариты корпуса — 210x210x340 мм. Снаружи он оклеен плёнкой ПВХ, но можно и просто его покрасить в желаемый цвет.

Рис.2. Чертеж дна корпуса

Поскольку большой звукорассеивающий конус играет в АС роль акустического фильтра нижних частот, то оказалось возможным упростить разделительный фильтр, выполнив его всего из двух элементов (рис. 3). Частота раздела полос фильтра — 5 кГц. Конденсатор лучше всего применить неполярный, тонкоплёночный, например К73-11. Этот конденсатор имеет цилиндрическую форму, и его корпус удобно использовать в качестве каркаса для намотки катушки индуктивности. Для этого из текстолита следует изготовить две щёчки размерами 22×22 мм с отверстием в центре, диаметр которого равен диаметру корпуса конденсатора. Щёчки нужно приклеить к корпусу конденсатора на расстоянии 18 мм одна от другой, а между ними намотать катушку фильтра. Её обмотка должна содержать 158 витков провода ПЭВ-2 0,5. При этом, как показали специально проведённые измерения, электромагнитное поле катушки практически не влияет на поле конденсатора. Такой фильтр удобно закрепить на фланце постоянного магнита низко-среднечастотной головки с помощью резиновых колец и крючков из скрепок, зацепленных за перемычки окон диффузородержателя. Во избежание дребезга на фланец магнита необходимо предварительно наклеить кусок толстой ткани — синтепона, войлока и т. п.

Рис.3. Схема фильтра акустической системы

Наиболее сложны в изготовлении конусы. В домашних условиях их можно выполнить из цельного куска дерева, выточив, например, в соответствии с рис. 4 и рис. 5 на токарном станке. Однако доступнее использовать для изготовления конусов листовой материал (фанеру, доски, ДСП). Для этого из него лобзиком вырезают необходимое количество кругов и колец-заготовок, подлежащих последующему склеиванию друг с другом клеем ПВА. Каждую заготовку необходимо предварительно обработать напильником с торцов, сняв определённую толщину материала для сопряжения заготовок по высоте. Чтобы не ошибиться, лучше всего перенести очертания конусов с рис. 4 и рис. 5 на миллиметровую бумагу в натуральную величину, а затем, в зависимости от толщины листового материала, определить толщину удаляемых кромок. При обработке заготовок следует оставлять припуск для последующей доводки склеенного конуса. Склеивать его начинают с вершины, которую для фиксации устанавливают, например, в углублении доски. Заготовки смазывают клеем и скрепляют гвоздями, шляпки которых необходимо притолить. Причём в последовательно склеиваемых заготовках отверстия для гвоздей лучше предварительно просверлить. Поскольку в основании большого конуса устанавливается высокочастотная головка, то часть заготовок конуса необходимо изготовлять в виде колец.

Рис.4. Чертеж большого конуса

Рис.5. Чертеж малого конуса

Последующую обработку и доводку конуса проводят в тисках. Для этого к основанию конуса шурупами прикрепляют технологическую доску, в центре которой закреплён кубик. Кубик зажимают в тисках и начинают обработку конуса. Вначале её ведут полукруглым напильником (до получения требуемой кривизны образующей), а затем шлифуют поверхность конуса наждачной бумагой. После такой обработки поверхность конуса шпатлюют и ещё раз обрабатывают мелким напильником и шлифуют мелкой наждачной бумагой. В заключение конус два-три раза красят нитроэмалью.

При самостоятельном изготовлении АС предлагается использовать более простой, чем показанный на фото, способ крепления конусов. Большой конус устанавливают над низко-среднечастотной головкой с помощью специально изготовленных для этой цели четырёх шпилек из латуни или дюралюминия (рис. 6) и четырёх металлических ушек (рис. 7). Последние следует прикрепить к основанию большого конуса шурупами по взаимоперпендикулярным радиусам. Шпильки, в соответствии с положением ушек, закрепляют одной стороной в сквозных отверстиях, просверленных в верхней стенке корпуса, причём две из них используют в качестве токопроводящих шин для подведения сигнала от фильтра к высокочастотной головке. Подводить сигнал к этим шпилькам следует с помощью латунных лепестков, подложенных под гайки. К этим лепесткам и припаивают провода.