Компьютеры Windows Интернет

Крутая шпаргалка по сочетанию цветов. Рисуем в GIMP Принципы отображения цвета в компьютерной графике

Цвет в компьютерной графике.

При работе с цветом используются понятия: глубина цвета (его еще называют цветовое разрешение) и цветовая модель.
Для кодирования цвета пиксела изображения может быть выделено разное количество бит. От этого зависит то, сколько цветов на экране может отображаться одновременно. Чем больше длина двоичного кода цвета, тем больше цветов можно использовать в рисунке. Глубина цвета - это количество бит, которое используют для кодирования цвета одного пиксела. Для кодирования двухцветного (черно-белого) изображения достаточно выделить по одному биту на представление цвета каждого пиксела. Выделение одного байта позволяет закодировать 256 различных цветовых оттенков. Два байта (16 битов) позволяют определить 65536 различных цветов. Этот режим называется High Color. Если для кодирования цвета используются три байта (24 бита), возможно одновременное отображение 16,5 млн цветов. Этот режим называется True Color. От глубины цвета зависит размер файла, в котором сохранено изображение.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью . Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями: RGB, CMYK, НSB.

1. Цветовая модель RGB.

Наиболее проста для понимания и очевидна модель RGB. В этой модели работают мониторы и бытовые телевизоры. Любой цвет считается состоящим из трех основных компонентов: красного (Red), зеленого (Green) и синего (Blue) . Эти цвета называются основными.

Считается также, что при наложении одного компонента на другой яркость суммарного цвета увеличивается. Совмещение трех компонентов дает нейтральный цвет (серый), который при большой яркости стремится к белому цвету. Это соответствует тому, что мы наблюдаем на экране монитора, поэтому данную модель применяют всегда, когда готовится изображение, предназначенное для воспроизведения на экране. Если изображение проходит компьютерную обработку в графическом редакторе, то его тоже следует представить в этой модели.
Метод получения нового оттенка суммированием яркостей составляющих компонентов называют аддитивным методом . Он применяется всюду, где цветное изображение рассматривается в проходящем свете («на просвет»): в мониторах, слайд-проекторах и т.п. Нетрудно догадаться, что чем меньше яркость, тем темнее оттенок. Поэтому в аддитивной модели центральная точка, имеющая нулевые значения компонентов (0,0,0), имеет черный цвет (отсутствие свечения экрана монитора). Белому цвету соответствуют максимальные значения составляющих (255, 255, 255). Модель RGB является аддитивной, а ее компоненты: красный (255,0,0), зеленый (0,255,0) и синий (0,0,255) - называют основными цветами .

2. Цветовая модель CMYK.

Эту модель используют для подготовки не экранных, а печатных изображений. Они отличаются тем, что их видят не в проходящем, а в отраженном свете. Чем больше краски положено на бумагу, тем больше света она поглощает и меньше отражает. Совмещение трех основных красок поглощает почти весь падающий свет, и со стороны изображение выглядит почти черным. В отличие от модели RGB увеличение количества краски приводит не к увеличению визуальной яркости, а наоборот к ее уменьшению.

Поэтому для подготовки печатных изображений используется не аддитивная (суммирующая) модель, а субтрактивная (вычитающая) модель . Цветовыми компонентами этой модели являются не основные цвета, а те, которые получаются в результате вычитания основных цветов из белого:
голубой (Cyan) = Белый - красный = зелёный + синий (0,255,255)
пурпурный (сиреневый) (Magenta) = Белый - зелёный = красный + синий (255,0,255)
жёлтый (Yellow) = Белый - синий = красный + зелёный (255,255,0)
Эти три цвета называются дополнительными , потому что они дополняют основные цвета до белого.
Существенную трудность в полиграфии представляет черный цвет. Теоретически его можно получить совмещением трех основных или дополнительных красок, но на практике результат оказывается негодным. Поэтому в цветовую модель CMYK добавлен четвертый компонент - черный . Ему эта система обязана буквой К в названии (blacK).

В типографиях цветные изображения печатают в несколько приемов. Накладывая на бумагу по очереди голубой, пурпурный, желтый и черный отпечатки, получают полноцветную иллюстрацию. Поэтому готовое изображение, полученое на компьютере, перед печатью разделяют на четыре составляющих одноцветных изображения. Этот процесс называется цветоделением. Современные графические редакторы имеют средства для выполнения этой операции.
В отличие от модели RGB, центральная точка имеет белый цвет (отсутствие красителей на белой бумаге). К трем цветовым координатам добавлена четвертая - интенсивность черной краски. Ось черного цвета выглядит обособленной, но в этом есть смысл: при сложении цветных составляющих с черным цветом все равно получится черный цвет. Сложение цветов в модели CMYK каждый может проверить, взяв в руки голубой, серневый и желтый карандаши или фломастеры. Смесь голубого и желтого на бумаге дает зеленый цвет, сереневого с желтым - красный и т.д. При смешении всех трех цветов получается неопределенный темный цвет. Поэтому в этой модели черный цвет и понадобился дополнительно.

3. Цветовая модель НSB.

Некоторые графические редакторы позволяют работать с цветовой моделью HSB. Если модель RGB наиболее удобна для компьютера, а модель CMYK - для типографий, то модель HSB наиболее удобна для человека. Она проста и интуитивно понятна. В модели HSB тоже три компонента: оттенок цвета (Hue) , насыщенность цвета (Saturation) и яркость цвета (Brightness) . Регулируя эти три компонента, можно получить столь же много произвольных цветов, как и при работе с другими моделями. Оттенок цвета указывает номер цвета в спектральной палитре. Насыщенность цвета характеризует его интенсивность - чем она выше, тем "чище" цвет. Яркость цвета зависит от добавления чёрного цвета к данному - чем её больше, тем яркость цвета меньше. Цветовая модель HSB удобна для применения в тех графических редакторах, которые ориентированы не на обработку готовых изображений, а на их создание своими руками. Существуют такие программы, которые позволяют имитировать различные инструменты художника (кисти, перья, фломастеры, карандаши), материалы красок (акварель, гуашь, масло, тушь, уголь, пастель) и материалы полотна (холст, картон, рисовая бумага и пр.). Создавая собственное художественное произведение, удобно работать в модели HSB, а по окончании работы его можно преобразовать в модель RGB или CMYK, в зависимости от того, будет ли оно использоваться как экранная или печатная иллюстрация. Значение цвета выбирается как вектор, выходящий из центра окружности. Точка в центре соответствует белому (нейтральному) цвету, а точки по периметру - чистым цветам. Направление вектора определяет цветовой оттенок и задается в модели HSB в угловых градусах. Длина вектора определяет насыщенность цвета. Яркость цвета задают на отдельной оси, нулевая точка которой имеет черный цвет.

Понятие цвета

Цвет – чрезвычайно сложная проблема, как для физики, так и для физиологии, т.к. он имеет как психофизиологическую, так и физическую природу. Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека. Другими словами, цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет, и от системы человеческого видения. Более того, одни предметы отражают свет (доска, бумага), а другие его пропускают (стекло, вода). Если поверхность, которая отражает только синий свет, освещается красным светом, она будет казаться черной. Аналогично, если источник зеленого света рассматривать через стекло, пропускающее только красный свет, он тоже покажется черным.

Самым простым является ахроматический цвет, т.е. такой, какой мы видим на экране черно–белого телевизора. При этом белыми выглядят объекты, ахроматически отражающие более 80% света белого источника, а черными – менее 3%. Единственным атрибутом такого цвета является интенсивность или количество. С интенсивностью можно сопоставить скалярную величину, определяя черное, как 0, а белое как 1.

Если воспринимаемый свет содержит длины волн в произвольных неравных количествах, то он называется хроматическим .

При субъективном описании такого цвета обычно используют три величины , такие как цветовой тон, насыщенность и яркость. Цветовой тон позволяет различать цвета, такие как красный, зеленый, желтый и т.д. (это основная цветовая характеристика). Насыщенность характеризует чистоту, т.е. степень ослабления (разбавления, осветления) данного цвета белым светом, и позволяет отличать розовый цвет от красного, изумрудный от ярко–зеленого и т. д. Другими словами, по насыщенности судят о том, насколько мягким или резким кажется цвет. Яркость отражает представление об интенсивности, как о факторе, не зависящем от цветового тона и насыщенности (интенсивность (мощность) цвета).



Обычно встречаются не чистые монохроматические цвета, а их смеси. В основе трехкомпонентной теории света лежит предположение о том, что в центральной части сетчатки глаза находятся три типа чувствительных к цвету колбочек. Первый воспринимает зеленый цвет, второй – красный, а третий – синий цвет. Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все три типа колбочек воздействует одинаковый уровень энергетической яркости, то свет кажется белым. Ощущение белого цвета можно получить, смешивая любые три цвета, если ни один из них не является линейной комбинацией двух других. Такие цвета называют основными .

Человеческий глаз способен различать около 350 000 различных цветов. Это число получено в результате многочисленных опытов. Четко различимы примерно 128 цветовых тонов. Если меняется только насыщенность, то зрительная система способна выделить уже не так много цветов: мы можем различить от 16 (для желтого) до 23 (для красного и фиолетового) таких цветов.

Таким образом, для характеристики цвета используются следующие атрибуты:

· Цветовой тон . Можно определить преобладающей длиной волны в спектре излучения. Позволяет различать цвета.

· Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.

· Яркость . Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трёхмерности свойств цвета.

Большинство людей различают цвета, а те, кто занимается компьютерной графикой, должны четко чувствовать разницу не только в цветах, но и в тончайших оттенках. Это очень важно, так как именно цвет несет в себе большое количество информации, которая ничуть не уступает в важности ни форме, ни массе, ни другим параметрам, определяющим каждое тело.

Факторы, влияющие на внешний вид конкретного цвета:

§ источник света;

§ информация об окружающих предметах;

§ ваши глаза;

Правильно подобранные цвета могут, как привлечь внимание к желаемому изображению, так и оттолкнуть от него. Это объясняется тем, что в зависимости от того, какой цвет видит человек, у него возникают различные эмоции, которые подсознательно формируют первое впечатление от видимого объекта.

Цвет в компьютерной графике необходим в силу следующих причин:

§ он несет в себе определенную информацию об объектах. Например, летом деревья зеленые, осенью – желтые. На черно–белой фотографии определить пору года практически невозможно, если на это не указывают какие–либо другие дополнительные факты.

§ цвет необходим также для того, чтобы различать объекты.

§ с его помощью можно вывести одни части изображения на первый план, другие же увести в фон, то есть акцентировать внимание на важном – композиционном – центре.

§ без увеличения размера при помощи цвета можно передать некоторые детали изображения.

§ в двумерной графике, а именно таковую мы видим на мониторе, так как он не обладает третьим измерением, именно при помощи цвета, точнее оттенков, имитируется (передается) объем.

§ цвет используется для привлечения внимания зрителя, создания красочного и интересного изображения.

Любое компьютерное изображение характеризуется, кроме геометрических размеров и разрешения (количество точек на один дюйм), максимальным числом цветов, которые могут быть в нем использованы. Максимальное количество цветов, которое может быть использовано в изображении данного типа, называется глубиной цвета.

Кроме полноцветных, существуют типы изображений с различной глубиной цвета – черно–белые штриховые, в оттенках серого, с индексированным цветом. Некоторые типы изображений имеют одинаковую глубину цвета, но различаются по цветовой модели.

поток электромагнитных волн различной длины и амплитуды. Глаз человека, будучи сложной оптической системой, воспринимает эти волны в диапазоне длин приблизительно от 350 до 780 нм. Свет воспринимается либо непосредственно от источника, например, от осветительных приборов, либо как отраженный от поверхностей объектов или преломленный при прохождении сквозь прозрачные и полупрозрачные объекты. Цвет - это характеристика восприятия глазом электромагнитных волн разной длины, поскольку именно длина волны определяет для глаза видимый цвет. Амплитуда, определяющая энергию волны (пропорциональную квадрату амплитуды), отвечает за яркость цвета. Таким образом, само понятие цвета является особенностью человеческого "видения" окружающей среды.


Рис. 2.1.

На рис. 2.1 схематически изображен глаз человека. Фоторецепторы, расположенные на поверхности сетчатки, играют роль приемников света. Хрусталик - это своеобразная линза, формирующая изображение, а радужная оболочка исполняет роль диафрагмы, регулируя количество света, пропускаемого внутрь глаза. Чувствительные клетки глаза неодинаково реагируют на волны различной длины. Интенсивность света есть мера энергии света, воздействующего на глаз, а яркость - это мера восприятия глазом этого воздействия. Интегральная кривая спектральной чувствительности глаза приведена на рис. 2.2 ; это стандартная кривая Международной комиссии по освещению (МКО, или CIE - Comission International de l"Eclairage) .

Фоторецепторы подразделяются на два вида: палочки и колбочки. Палочки являются высокочувствительными элементами и работают в условиях слабого освещения. Они нечувствительны к длине волны и поэтому не "различают" цвета. Колбочки же, наоборот, обладают узкой спектральной кривой и "различают" цвета. Палочек существует только один тип, а колбочки подразделяются на три вида, каждый из которых чувствителен к определенному диапазону длин волн (длинные, средние или короткие.) Чувствительность их также различна.

На рис. 2.3 представлены кривые чувствительности колбочек для всех трех видов. Видно, что наибольшей чувствительностью обладают колбочки, воспринимающие цвета зеленого спектра, немного слабее - "красные" колбочки и существенно слабее - "синие".


Рис. 2.2.


Рис. 2.3.

Таким образом, если функция характеризует спектральное разложение светового излучения от некоторого источника (рис. 2.4), т. е. распределение интенсивности по длинам волн, то три типа колбочек будут посылать в мозг сигналы (красный, зеленый, синий), мощность которых определяется интегральными соотношениями

где - функции чувствительности соответствующих типов колбочек.


Рис. 2.4.

Если воспринимаемый свет содержит все видимые длины волн в приблизительно равных количествах, то он называется ахроматическим и при максимальной интенсивности воспринимается как белый, а при более низких интенсивностях - как оттенки серого цвета. Интенсивность отраженного света удобно рассматривать в диапазоне от 0 до 1, и тогда нулевое значение будет соответствовать черному цвету. Если же свет содержит длины волн в неравных пропорциях, то он является хроматическим . Объект , отражающий свет, воспринимается как цветной, если он отражает или пропускает свет в узком диапазоне длин волн. Точно так же и источник света воспринимается как цветной, если он испускает волны в узком диапазоне длин. При освещении цветной поверхности цветным источником света могут получаться довольно разнообразные цветовые эффекты.

В этом разделе:

    излучаемый и отражённый свет в компьютер­ной графике;

    формирование цветовых оттенков на экране монитора;

    формирование цветовых оттенков при печати изображений.

Для описания цветовых оттенков, которые могут быть воспроиз­ведены на экране компьютера и на принтере, разработаны специа­льные средства - цветовые модели (или системы цветов). Чтобы успешно применять их в компьютерной графике, необходимо:

    понимать особенности каждой цветовой модели

    уметь определять тот или иной цвет, используя различные цветовые модели

    понимать, как различные графические программы решают во­прос кодирования цвета

    понимать, почему цветовые оттенки, отображаемые на монито­ре, достаточно сложно точно воспроизвести при печати.

Мы видим предметы потому, что они излучают или отражают свет.

Свет - электромагнитное излучение.

Цвет характеризует действие излучения на глаз человека. Та­ким образом, лучи света, попадая на сетчатку глаза, производят ощущение цвета.

Излучаемый свет - это свет, выходящий из источника, напри­мер, Солнца, лампочки или экрана монитора.

Отражённый свет - это свет, «отскочивший» от поверхности объекта. Именно его мы видим, когда смотрим на какой-либо пред­мет, не являющийся источником света.

Излучаемый свет, идущий непосредственно от источника к гла­зу, сохраняет в себе все цвета, из которых он создан. Но этот свет может измениться при отражении от объекта (рис. 1).

Рис. 1. Излучение, отражение и поглощение света

Подобно Солнцу и другим источникам освещения, монитор излучает свет. Бумага, на которой печатается изображение, отражает свет. Так как цвет может получиться в процессе излучения и в про­весе отражения, то существуют два противоположных метода его описания: системы аддитивных и субтрактивных цветов.

Система аддитивных цветов

Если с близкого расстояния (а ещё лучше с помощью лупы) посмотреть на экран работающего монитора или телевизора, то нетрудноувидеть множество мельчайших точек красного (Red), зелёного (Green) и синего (Blue) цветов. Дело в том, что на поверхности экранaрасположены тысячи фосфоресцирующих цветовых точек, которые бомбардируются электронами с большой скоростью. Цветовые точки излучают свет под воздействием электронного луча. Так как размеры этих точек очень малы (около 0,3 мм в диаметре), соседние разноцветные точки сливаются, формируя все другие цвета и оттенки, например:

красный + зелёный = жёлтый,

красный + синий = пурпурный,

зелёный + синий = голубой,

красный + зеленый + синий = белый.

Компьютер может точно управлять количеством света, излучае­мого через каждую точку экрана. Поэтому, изменяя интенсивность свечения цветных точек, можно создать большое многообразие от­тенков.

Таким образом, аддитивный (add - присоединять) цвет получает­ся при объединении (суммировании) лучей трёх основных цветов -красного, зелёного и синего. Если интенсивность каждого из них до­стигает 100%, то получается белый цвет. Отсутствие всех трёх цве­тов даёт чёрный цвет. Систему аддитивных цветов, используемую в компьютерных мониторах, принято обозначать аббревиатурой RGB.

В большинстве программ для создания и редактирования изоб­ражений пользователь имеет возможность сформировать свой собст­венный цвет (в дополнение к предлагаемым палитрам), используя красную, зелёную и синюю компоненты. Как правило, графические программы позволяют комбинировать требуемый цвет из 256 оттен­ков красного, 256 оттенков зелёного и 256 оттенков синего. Как не­трудно подсчитать, 256 х 256 х 256 = 16,7 миллионов цветов. Вид диалогового окна для задания произвольного цветового оттенка в разных программах может быть различным.

Таким образом, пользователь может выбрать готовый цвет из встроенной палитры или создать свой собственный оттенок, указав в полях ввода значения яркостей R, G и В для красной, зелёной и синей цветовых составляющих в диапазоне от 0 до 255.

В программе CorelDRAW! цветовая модель RGB дополнительно представляется в виде трёхмерной системы координат, в ко­торой нулевая точка соответствует чёрному цвету. Оси координат соответствуют основным цветам, а каждая из трёх координат в диа­пазоне от 0 до 255 отражает «вклад» того или иного основного цве­та в результирующий оттенок. Перемещение указателей («ползун­ков») по осям системы координат влияет на изменение значений в полях ввода, и наоборот. На диагонали, соединяющей начало коор­динат и точку, в которой все составляющие имеют максимальный уровень яркости, располагаются оттенки серого цвета - от чёрного до белого (оттенки серого цвета получаются при равных значениях уровней яркости всех трёх составляющих).

Так как бумага не излучает свет, цветовая модель RGB не мо­жет быть использована для создания изображения на печатаемой странице.

Система субтрактивных цветов

В процессе печати свет отражается от листа бумаги. Поэтому для печати графических изображений используется система цветов,работающая с отраженным светом - система субтрактивных цветов (subtract - вычитать).

Белый цвет состоит из всех цветов радуги. Если пропустить луч света через простую призму, он разложится в цветной спектр. Красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолето­вый цвета образуют видимый спектр света. Белая бумага при осве­щении отражает все цвета, окрашенная же бумага поглощает часть цветов, а остальные - отражает. Например, листок красной бума­ги, освещённый белым светом, выглядит красным именно потому, что такая бумага поглощает все цвета, кроме красного. Та же крас­ная бумага, освещённая синим цветом, будет выглядеть чёрной, так как синий цвет она поглощает.

В системе субтрактивных цветов основными являются голубой (Cyan), пурпурный (Magenta) и жёлтый (Yellow). Каждый из них поглощает (вычитает) определённые цвета из белого света, падаю­щего на печатаемую страницу. Вот как три основных цвета могут быть использованы для получения чёрного, красного, зелёного и си­него цветов:

голубой + пурпурный + жёлтый = чёрный,

голубой + пурпурный = синий,

жёлтый + пурпурный = красный,

жёлтый + голубой = зелёный.

Смешивая основные цвета в разных пропорциях на белой бума­ге, можно создать большое многообразие оттенков.

Белый цвет получается при отсутствии всех трёх основных цве­тов. Высокое процентное содержание голубого, пурпурного и жёлто­го образует чёрный цвет. Точнее, чёрный цвет должен получиться теоретически, в действительности же из-за некоторых особенностей типографских красок смесь всех трёх основных цветов даёт гряз­но-коричневый тон, поэтому при печати изображения добавляется ещё чёрная краска (Black ).

Систему субтрактивных цветов обозначают аббревиатурой CMYK (чтобы не возникла путаница с Blue , для обозначения Black используется символ К).

Процесс четырёхцветной печати можно разделить на два этапа.

1. Создание на базе исходного рисунка четырёх составляющих изображений голубого, пурпурного, жёлтого и чёрного цветов.

2. Печать каждого из этих изображений одного за другим на одном и том же листе бумаги.

Разделение цветного рисунка на четыре компоненты выполняет специальная программа цветоделения. Если бы принтеры использо­вали систему CMY (без добавления чёрной краски), преобразование изображения из системы RGB в систему CMY было бы очень про­стым: значения цветов в системе CMY - это просто инвертированные значения системы RGB . На схеме «цветовой круг» (рис. 2) по­казана взаимосвязь основных цветов моделей RGB и CMY. Смесь красного и зелёного даёт жёлтый, жёлтого и голубого - зелёный, красного и синего - пурпурный и т. д.

Таким образом, цвет каждого треугольника на рис. 2 определя­ется как сумма цветов смежных к нему треугольников. Но из-за не­обходимости добавлять чёрную краску, процесс преобразования ста­новится значительно сложнее. Если цвет точки определялся сме­сью цветовRGB , то в новой системе он может определяться смесью значений CMY плюс ещё включать некоторое количество чёрного цвета. Для преобразования данных системы RGB в систему CMYK программа цветоделения применяет ряд математических операций. Если пиксель в системе RGB имел чистый красный цвет (100% R, 0% G, 0% В), то в системе CMYK он должен иметь равные значе­ния пурпурного и жёлтого (0% С, 100% М, 100% Y, 0% К).

В приведённой здесь таблице для примера представлено описа­ние нескольких цветов с использованием моделей RGB и CMYK (диапазон изменения составляющих цвета - от 0 до 255).

Таблица 1

Важно то, что вместо сплошных цветных областей программа цветоделения создаёт растры из отдельных точек, причём эти точечные растры слегка повёрнуты друг относительно друга так, чтобы точки разных цветов не накладывались одна поверх дру­гой, а располагались рядом.

Маленькие точки различных цветов, близко расположенные друг к другу, кажутся сливающимися вместе. Именно так наши глаза воспринимают результирующий цвет.

Таким образом, система RGB работает с излучаемым светом, а CMYK - с отражённым. Если необходимо распечатать на принтере изображение, полученное на мониторе, специальная программа выполняет преобразование одной системы цветов в другую. Но в сис­темах RGB и CMYK различна природа получения цветов. Поэтому цвет, который мы видим на мониторе, достаточно трудно точно по­вторить при печати. Обычно на экране цвет выглядит несколько ярче по сравнению с тем же самым цветом, выведенным на печать.

Всё множество цветов, которые могут быть созданы в цветовой модели, называется цветовым диапазоном . Диапазон RGB шире диа­пазона CMYK . Это означает, что цвета, созданные на экране, не всегда можно воспроизвести при печати. Поэтому в некоторых гра­фических программах предусмотрены диапазонные предостерегаю­щие указатели. Они появляются в том случае, если цвет, созданный в модели RGB, выходит за рамки диапазона CMYK .

Существуют программы (например, CorelDraw ! и Adobe Pho ­ toShop ), которые позволяют создавать на экране рисунки не только в системе RGB, но и в цветах CMYK . Для создания произвольного цвета в системе CMYK необходимо указать процентное содержание каждого основного цвета аналогично тому, как это делается при ра­боте с RGB-моделью. Тогда, глядя на экран, пользователь сможет увидеть, как рисунок будет выглядеть при печати.

Система «Тон - Насыщенность - Яркость»

Системы цветов RGB и CMYK базируются на ограничениях, на­кладываемых аппаратным обеспечением (мониторами компьютеров и типографскими красками). Более интуитивным способом описа­ния цвета является его представление в виде тона (Hue ), насыщен­ности(Saturation ) и яркости (Brightness ). Для такой системы цве­тов используется аббревиатура HSB . Тон - конкретный оттенок цвета: красный, жёлтый, зелёный, пурпурный и т. п. Насыщен­ ность характеризует «чистоту» цвета: уменьшая насыщенность, мы «разбавляем» его белым цветом. Яркость же зависит от количества чёрной краски, добавленной к данному цвету: чем меньше черноты, тем больше яркость цвета. Для отображения на мониторе компью­тера система HSB преобразуется в RGB, а для печати на принте­ре - в систему CMYK . Можно создать произвольный цвет, указав в полях ввода Н, S и В значения для тона, насыщенности и яркости из диапазона от 0 до 255.

Кроме того, пользователь может выбрать цветовой тон, щёлкнув мышью в соответствующей точке цветового поля.

Понятие цвета

Цвет – чрезвычайно сложная проблема, как для физики, так и для физиологии, т.к. он имеет как психофизиологическую, так и физическую природу. Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека. Другими словами, цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет, и от системы человеческого видения. Более того, одни предметы отражают свет (доска, бумага), а другие его пропускают (стекло, вода). Если поверхность, которая отражает только синий свет, освещается красным светом, она будет казаться черной. Аналогично, если источник зеленого света рассматривать через стекло, пропускающее только красный свет, он тоже покажется черным.

Самым простым является ахроматический цвет, т.е. такой, какой мы видим на экране черно–белого телевизора. При этом белыми выглядят объекты, ахроматически отражающие более 80% света белого источника, а черными – менее 3%. Единственным атрибутом такого цвета является интенсивность или количество. С интенсивностью можно сопоставить скалярную величину, определяя черное, как 0, а белое как 1.

Если воспринимаемый свет содержит длины волн в произвольных неравных количествах, то он называется хроматическим .

При субъективном описании такого цвета обычно используют три величины , такие как цветовой тон, насыщенность и яркость. Цветовой тон позволяет различать цвета, такие как красный, зеленый, желтый и т.д. (это основная цветовая характеристика). Насыщенность характеризует чистоту, т.е. степень ослабления (разбавления, осветления) данного цвета белым светом, и позволяет отличать розовый цвет от красного, изумрудный от ярко–зеленого и т. д. Другими словами, по насыщенности судят о том, насколько мягким или резким кажется цвет. Яркость отражает представление об интенсивности, как о факторе, не зависящем от цветового тона и насыщенности (интенсивность (мощность) цвета).



Обычно встречаются не чистые монохроматические цвета, а их смеси. В основе трехкомпонентной теории света лежит предположение о том, что в центральной части сетчатки глаза находятся три типа чувствительных к цвету колбочек. Первый воспринимает зеленый цвет, второй – красный, а третий – синий цвет. Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все три типа колбочек воздействует одинаковый уровень энергетической яркости, то свет кажется белым. Ощущение белого цвета можно получить, смешивая любые три цвета, если ни один из них не является линейной комбинацией двух других. Такие цвета называют основными .

Человеческий глаз способен различать около 350 000 различных цветов. Это число получено в результате многочисленных опытов. Четко различимы примерно 128 цветовых тонов. Если меняется только насыщенность, то зрительная система способна выделить уже не так много цветов: мы можем различить от 16 (для желтого) до 23 (для красного и фиолетового) таких цветов.

Таким образом, для характеристики цвета используются следующие атрибуты:

· Цветовой тон . Можно определить преобладающей длиной волны в спектре излучения. Позволяет различать цвета.

· Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.

· Яркость . Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трёхмерности свойств цвета.

Большинство людей различают цвета, а те, кто занимается компьютерной графикой, должны четко чувствовать разницу не только в цветах, но и в тончайших оттенках. Это очень важно, так как именно цвет несет в себе большое количество информации, которая ничуть не уступает в важности ни форме, ни массе, ни другим параметрам, определяющим каждое тело.

Факторы, влияющие на внешний вид конкретного цвета:

§ источник света;

§ информация об окружающих предметах;

§ ваши глаза;

Правильно подобранные цвета могут, как привлечь внимание к желаемому изображению, так и оттолкнуть от него. Это объясняется тем, что в зависимости от того, какой цвет видит человек, у него возникают различные эмоции, которые подсознательно формируют первое впечатление от видимого объекта.

Цвет в компьютерной графике необходим в силу следующих причин:

§ он несет в себе определенную информацию об объектах. Например, летом деревья зеленые, осенью – желтые. На черно–белой фотографии определить пору года практически невозможно, если на это не указывают какие–либо другие дополнительные факты.

§ цвет необходим также для того, чтобы различать объекты.

§ с его помощью можно вывести одни части изображения на первый план, другие же увести в фон, то есть акцентировать внимание на важном – композиционном – центре.

§ без увеличения размера при помощи цвета можно передать некоторые детали изображения.

§ в двумерной графике, а именно таковую мы видим на мониторе, так как он не обладает третьим измерением, именно при помощи цвета, точнее оттенков, имитируется (передается) объем.

§ цвет используется для привлечения внимания зрителя, создания красочного и интересного изображения.

Любое компьютерное изображение характеризуется, кроме геометрических размеров и разрешения (количество точек на один дюйм), максимальным числом цветов, которые могут быть в нем использованы. Максимальное количество цветов, которое может быть использовано в изображении данного типа, называется глубиной цвета.

Кроме полноцветных, существуют типы изображений с различной глубиной цвета – черно–белые штриховые, в оттенках серого, с индексированным цветом. Некоторые типы изображений имеют одинаковую глубину цвета, но различаются по цветовой модели.