Компьютеры Windows Интернет

Fuse atmega8 описание. Микроконтроллеры ATMEL. Фьюзы. Fuses. Основные правила для новичков

Что же такое FUSE биты? Слова вроде бы знакомые, но многие толком и не знают их предназначение, ставят галочки и прошивают, работает устройство да и ладно. Я вам хочу рассказать немного про эти FUSE биты.

FUSE биты (фьюзы ) – ну если по простому, то они настраивают определенные параметры микроконтроллеров, это некий инструмент для их тонкой настройки Фьюзы включают или настраивают такие параметры как:
- частота генератора, внешний или внутренний генератор
- запрет на чтение прошивки микроконтроллера
- включение или выключение таймеров
- деление частоты кварцевого генератора
- защита EEPROOM от стирания
…и так далее. У каждого микроконтроллера выставляются свои фьюзы, у разных микроконтроллеров разный список фьюзов, например в ATmega8 нет фьюза CKOUT, но он присутствует в ATtiny2313. В даташитах к микроконтроллерам все эти фьюзы расписаны.

Главное правило при работе с фьюзами – не торопиться их выставлять, если вы точно не уверены в правильности своих действий.

Теперь распишем названия некоторых фьюзов, их обозначения и то, на что они влияют. Вообще, есть фьюзы для защиты программы от копирования (лок-биты), фьюзы, устанавливающие определенные функции, а так же так называемые "старшие" и "младшие" байты. Самый популярный фьюз, который выставляется практически всегда, это:

CKSEL , таких фьюзов с разными буквами всего четыре, это группа CKSEL 0, CKSEL 1, CKSEL 2 и CKSEL 3 , определяют частоту тактового генератора, и его тип, тактовые импульсы необходимы для работы практически любого микроконтроллера. Во многих микроконтроллерах есть внутренний генератор, но мы можем подключить внешний и фьюзы выставить для работы от внешнего генератора. Внешний кварцевый резонатор подключается на выводы XTAL 1 и XTAL 2 , кроме того припаивается пара конденсаторов ~20пф одним концом на кварц, другим на минус. Если допустить ошибку при установке этих фьюзов, то микроконтроллер может "заблокироваться" для того чтобы восстановить контроллер, подают тактовый сигнал на ногу XTAL1, на данный момент придумано не мало схем для восстановления контроллеров, залоченных таким образом. Этот генератор можно сделать практически из любой логики или даже из таймера 555.

Есть простые схемы, с использованием 1 транзистора, пары резисторов и кварцевого резонатора, и более сложные, на микросхемах типа К155ЛА3. Данные способы 100% оживляют контроллеры с таким дефектом

Группа фьюзов SUT1 и SUT0 - fuse биты, управляющие режимом запуска тактовых генераторов МК, а так же задают скорость старта МК после подачи питания. Связаны с фьюзами CKSEL, а именно CKSEL0 .

CKOPT - бит, определяет работу встроенного генератора для работы с кварцевыми резонаторами, устанавливает "амплитуду" колебаний тактового сигнала на кварце. Данный бит программируется достаточно часто.

RSTDISBL – очень опасный фьюз, ошибочная установка может отключить вывод RESE T , после чего пропадет возможность программирования ISP программатором. Бит RSTDISBL превращает вывод RESET в порт ввода-вывода.

SPIEN – фьюз, который разрешает работу МК по интерфейсу SPI. Все микроконтроллеры выпускаются с уже установленным битом SPIEN . Считается опасным фьюзом.

EESAVE - Удобно читать как EEPROOM SAVE, дословно означает "сохранить EEPROOM", данный фьюз защищает EEPROM от стирания. Например когда в очередной раз заливаете прошивку в контроллер, можно поставить EESAVE = 0 , и при стирании МК EEPROOM останется не тронутым.

BOOTSZ , состоит из группы битов BOOTSZ1 и BOOTSZ0 , определяют размер области памяти записываемых программ, связан с битом BOOTRST .

BOOTRST, определяет адрес, с которого и будет начато исполнение программы. Если бит установлен т.е. если BOOTRST = 0 , то начало программы будет с адреса области загрузчика (Boot Loader).

BODEN - бит, который при выставлении (BODEN=0 ), будет контролировать за питающим напряжением, на предельно низких напряжениях микроконтроллер может перезапускаться, глючить и так далее. Связан с BODLEVEL.

BODLEVEL . - определяет момент срабатывания детектора уровня питающего напряжения, при снижении напряжения питания ниже уровня, произойдет "перезагрузка" контроллера.

SELFPRGEN - бит, который разрешает (SELFPRGEN=0 ) или запрещает (SELFPRGEN =1 ) программе производить запись в память.

OCDEN – данный фьюз разрешает или запрещает чтение программы из памяти контроллера.

Я как то упоминал в своих статьях про то, что в некоторых программах фьюзы выставляются зеркально. Запомните, запрограммированный фьюз=0 , а не запрограммированный=1 . В программах Algorithm Builder, UniProf фьюзывыставляются одним образом, а в программах PonyProg, CodeVisionAVR, AVR Studio, SinaProg и некоторых других, фьюзы нужно выставлять зеркально по сравнению с предыдущим списком программ.

Уже давно на просторах Интернета появились так называемые "калькуляторы фьюзов", это специальные приложения, призванные помочь в конфигурировании микроконтроллера. Приложение интуитивно понятное, думаю разберетесь, в списке контроллеров выбираем нужный нам МК, далее выбираем необходимые функции, а ниже выставляются галочки фьюзов, все очень просто.

Данные приложения очень удобны, т.к. например в последнее время очень часто авторы своих проектов значения фьюзов пишут непонятными буквами или цифрами, или же словами, новичку не понятно, что это значит и какие фьюзы при этом нужно выставлять, (часто можно встретить комментарий к статье "а какие фьюзы выставлять?"). Калькулятор фьюзов нам в этом плане очень сильно помогает.

Думаю что теперь, если у вас спросят "что такое фьюзы, и зачем они нужны?", вы сможете объяснить человеку их назначение, а пока, на этом все!

В прошлых статьях я советовал тебе не лезть к этим битам. И на это были свои основания, так как неправильно выставив эти биты ты можешь наглухо заблокировать контроллер для дальнейшей перепрошивки или вообще какого либо использования.

Но без знания этой особенности контроллера далеко не уедешь. Так что распишу все по порядку. У разных версий контроллеров число FUSES разное, какие то могут отсутствовать, но основные есть всегда. Вот по ним и пройдемся.

Конфигурационные биты находятся в особой области памяти и могут быть изменены только с помощью программатора при записи контроллера. Есть старший байт и младший байт. Младший байт обычно отвечает за частоту, а старший за всякие фенечки.

Итак, главное:

В Atmel AVR принята следующая нотация: сброшенный в ноль fuse bit считается активным, т.е. включенным.

Пример Бит RSTDSBL, как можно догадаться из названия, это RESET DISABLE. Включил эту опцию и у тебя нога RESET превращается в порт ввода-вывода, но за это ты теряешь возможность перешить контроллер через ISP.

Так вот, чтобы выключить RESET (и получить большое западло с прошивкой в обмен на мелкую подачку в виде дополнительной ножки) в этот бит надо записать 0.

С одной стороны нелогично и криво. Как бы во всем мире принята нотация, что ноль это выключено, а тут, понимаешь, наоборот. С другой стороны, это их контроллер, что хотят то и делают. Один раз запомнить и все. Да и вообще, в электронике часто за сигнал берут ноль.


Однако контроллеры делают электронщики, а прошивающие программы — программисты. Как бы логично. И вот эти программисты взяли и заварили адскую путаницу с галочками. Нет бы им раз и навсегда принять за стандарт, что галочка это 1, а не ВКЛЮЧЕНО (что, напомню, является нулем). И поэтому в одних прошивающих программах галочка означает, что опция включена (в FUSE бит записывается 0),в других, обычно написанных электронщиками, галочка означает единицу. Т.е. с точностью до наоборот.

А что будет если перепутать? А будет ОЧЕНЬ плохо. Контроллер войдет в неправильный режим и может заблокируется наглухо. Т.е. раз прошил и все. Приехал.

Нет, спасти его можно, но для этого тебе потребуются дополнительные ухищрения в виде высоковольтного программатора, JTAG адаптера или генератора тактов. Все зависит от того в какой режим ты загонишь контроллер своими неправильными настройками.

Новичку, обычно, бывает проще сходить и купить новый МК, чем оживить заблокированный. Но не спеши отправлять его в помойку. Пометь и отложи на будущее, разберешься оживишь.

Конфигурация тактового сигнала
По умолчанию все контроллеры AVR (кроме старых серий AT90S2313, AT90S8535 итд) сконфигурированы так, чтобы работать от внутреннего источника тактов. Т.е. стоить подать на них питание и они начинают работать. Ничего больше и не нужно.

За источник тактов отвечают биты CKSEL
Выставив их правильным образом можно выбрать частоту работы контроллера, а также источник тактового сигнала.

  • CKSEL3…0 = 0000 — Внешний источник сигнала.

Т.е. на вход XTAL1 подаются прямоугольные импульсы. Такое иногда делают в синхронных системах, когда несколько контроллеров работают от одного генератора.

Техническое отступление
В этот режим часто попадают, когда пытаются выставить контроллер на работу от внешнего кварца (CKSEL=1111), но либо путают нотацию, либо из-за прикола с обратной нотацией битов во всяких извратских прошивающих программах. Раз и кристалл заблокировался. Но, на самом деле, наглухо, с помощью CKSEL, заблокировать кристалл нельзя. Обычно все решается напайкой кварца и запуском от этого кварца. Худшее же что может случиться — потребуется внешний генератор тактов. Который бы оживил кристалл. Делается он за пять минут из любой микросхемы ТТЛ логики, например из К155ЛА3 — схем в инете навалом. Или на таймере 555, либо можно взять второй МК и на нем написать простую программку, дрыгающую ножкой. А если есть осциллограф, то с него можно поиметь сигнал контрольного генератора — его клемма должна быть на любом осциле. Землю осцила на землю контроллера, а выход генератора на XTAL1.

Но что делать если зуд нестерпимый, контроллер залочен, а никакой микросхемы для реанимации под рукой нету? Тут иногда прокатывает метод пальца. Прикол в том, что на тело человека наводится весьма нефиговая наводка частотой примерно 50Гц. Всякий кто хватался за щупы осциллографа руками помнит какие шняги тут же возникают на экране — вот это оно! А почему бы эту наводку не заюзать как тактовый сигнал? Так что припаиваешь к выводу XTAL1 провод, хватаешься за него рукой, и жмешь на чтение или запись контроллера:) Предупреждаю сразу, метод работает через жопу, далеко не с первого раза, читает долго и порой с ошибками, но на перезапись FUSE битов в нужную сторону должно хватить. Пару раз у меня такой фокус получался.

CKSEL3…0 = 0100 – 8 MHz от внутреннего генератора(обычно по умолчанию стоят такие)
Для большинства AVR такая конфигурация CKSEL означает тактовку от внутреннего генератора на 8Мгц, но тут могут быть варианты. Так что в этом случае втыкай внимательно в даташит. В табличку Internal Calibrated RC Oscillator Operating Modes

Иногда нужно иметь внешний тактовый генератор, например, чтобы его можно было подстраивать без вмешательства в прошивку. Для этого можно подключить RC цепочку, как показано на схеме и подсчитать частоту по формуле f = 1/3RC , где f будет частотой в герцах, а R и С соответственно сопротивлением резистора и емкостью конденсатора, в омах и фарадах.

  • CKSEL3…0 = 0101 – для частот ниже 0.9 MHz
  • CKSEL3…0 = 0110 – от 0.9 до 3 MHz
  • CKSEL3…0 = 0111 – от 3 до 8 MHz
  • CKSEL3…0 = 1000 – от 8 до 12 MHz

Данная табличка справедлива только для ATmega16 у других МК может отличаться. Уточняй в даташите!

Проблема у внутреннего генератора и внешних RC цепочек обычно в нестабильности частоты, а значит если сделать на ней часы, то они будут врать, не сильно, но будут. Поэтому иногда полезно запустить контроллер на кварце, кроме того, только на кварце можно выдать максимум частоты, а значит и производительности проца.

  • CKSEL3…0 = 1001 — низкочастотный «часовой» кварц.

На несколько десятков килогерц.
Используется в низкоскоростных устройствах, особенно когда требуется точная работа и низкое потребление энергии.

Для обычных кварцев ситуация несколько иная. Тут максимальная частота кварца зависит также и от бита CKOPT когда CKOPT = 1 то:

  • CKSEL3…0 = 1010 или 1011 — от 0,4 до 0.9 MHz
  • CKSEL3…0 = 1100 или 1101 — от 0,9 до 3 MHz
  • CKSEL3…0 = 1110 или 1111 – от 3 до 8 MHz (либо от 1 до 16Мгц при CKOPT=0)

А если CKOPT равен 0 то при тех же значения CКSEL можно поставить кварц от 1 до 16MHz.

Разумеется, кварц на 16MHz можно поставить только на Мегу без индекса ”L”. (Хотя, как показывает практика, Lку тоже можно неслабо разогнать. У меня ATMega8535L заработала на 16Мгц, но были странные эффекты в работе. Поэтому я не стал так извращаться и разгон снял). Опять же, все выше сказанное в точности соответствует только Меге 16, у других может незначительно отличаться.

Бит CKOPT задает размах тактового сигнала. Т.е. амплитуду колебаний на выходе с кварца. Когда CKOPT = 1 то размах маленький, за счет этого достигается меньшее энергопотребление, но снижается устройчивость к помехам, особенно на высоких скоростях (а предельной, судя по таблице выше, вообще достичь нельзя. Точнее запуститься то он может запустится, но вот надежность никто не гарантирует). А вот если CKOPT активизировать, записать в него 0, то размах сигнала сразу же станет от 0 до питания. Что увеличит энергопотребление, но повысит стойкость к помехам, а значит и предельную скорость. При оверклокинге МК тем более надо устанавливать CKOPT в 0.

Также стоит упомянуть бит SCKDIV8 которого нет в Atmega16, но который часто встречается в других контроллерах AVR. Это делитель тактовой частоты. Когда он установлен, т.е. в нуле, то частота выставленная в битах CКSEL0…3 делится на 8, на чем в свое время прилично застрял Длинный, долго пытаясь понять чего это у него западло не работает. Вся прелесть в том, что этот делитель можно отключить программно, записав в регистр CLKPR нужный коэффициент деления, например один. Весь прикол в том, что SCKDIV8 активен по дефолту! Так что внимательней!

Биты SUT задают скорость старта МК после снятия RESET или подачи питания. Величина там меняется от 4ms до 65ms. Мне, за всю практику, пока не довелось эту опцию использовать — незачем. Так что ставлю на максимум 65ms — надежней будет.

Бит RSTDISBL способен превратить линию Reset в одну из ножек порта, что порой очень нужно когда на какой-нибудь крошечной Tiny не хватает ножек на все задачи, но надо помнить, что если отрубить Reset то автоматически отваливается возможность прошивать контроллер по пяти проводкам. И для перешивки потребуется высоковольтный параллельный программатор, который стоит несколько тысяч и на коленке сделать его проблематично, хотя и возможно.

Второй заподлянский бит это SPIEN если его поставить в 1, то у тебя тоже мгновенно отваливается возможность прошивать по простому пути и опять будет нужен параллельный программатор. Впрочем, успокаивает то, что сбросить его через SPI невозможно, по крайней мере в новых AVR (в старых, в AT90S*** было можно)

WDTON отвечает за Собачий таймер, он же Watch Dog. Этот таймер перезагружает процессор если его периодически не сбрасывать – профилактика зависаний. Если WDTON поставить в 0, то собаку нельзя будет выключить вообще.

BODLEVEL и BODEN — это режим контроля за напряжением. Дело в том, что при определенном пороге напряжения, ниже критического уровня, контроллер может начать сильно глючить. Самопроизвольно может запортачить, например, EEPROM или еще что откосить. Ну, а ты как думал, не покорми тебя с пару недель — тоже глючить начнешь:)

Так вот, для решения этой проблемы есть у AVR встроенный супервизор питания. Он следит, чтобы напруга была не ниже адекватного уровня. И если напруги не хватает, то просто прижимает RESET и не дает контроллеру стартовать. Вот эти два фуза и рулят этой фичей. BODEN включает, а BODLEVEL позволяет выбрать критический уровень, один из двух. Какие? Не буду раскрывать, посмотри в даташите (раздел System Control and Reset).

JTAGEN — Включить JTAG. По умолчанию активна. Т.е. JTAG включен. Из-за этого у MEGA16 (а также 32 и прочих, где есть JTAG) нельзя использовать вывода порта C, отвечающие за JTAG. Но зато можно подключать JTAG отладчик и с его помощью лезть контроллеру в мозги.

EESAVE — Защита EEPROM от стирания. Если эту штуку включить, то при полном сбросе МК не будет стерта зона EEPROM. Полезно, например, если в EEPROM записываются какие-либо ценные данные по ходу работы.

BOOTRST — перенос стартового вектора в область бутлоадера. Если эта галочка включена, то МК стартует не с адреса 00000, а с адреса бутсектора и вначале выполняет бутлоадер. Подробней про это было написано в статье про прошивку через лоадер.

BOOTSZ0..1 — группа битов определяющая размер бут сектора. Подробней смотри в даташите. От контроллера к контроллеру они отличаются.

Lock Bits
Это, собственно, и к фузам то отношения не имеет. Это биты защиты. Установка этих битов запрещает чтение из кристалла. Либо флеша, либо ЕЕПРОМА, либо и того и другого сразу. Нужно, только если ты продаешь свои устройства. Чтобы злые конкуренты не слили прошивку и не заказали в китае более 9000 клонов твоего девайса, оставив тебя без штанов. Опасности не представляют. Если ты заблокируешь ими кристалл, то выполни полное стирание и нет проблемы.

Характерной особенностью установленных лок битов является считываемая прошивка — в ней байты идут по порядку. Т.е. 00,01, 02, 03, 04… FF, 00… Видел такую срань? Значит не судьба тебе спереть прошивку — защищена =)

Техника безопасности
И главное правило при работе с FUSE битами — ВНИМАНИЕ, ВНИМАНИЕ и ЕЩЕ РАЗ ВНИМАНИЕ! Не выставляйте никогда FUSE не сверившись с даташитом, даже если срисовываете их из проверенного источника.

Обязательно разберитесь что означает галочка в прошивающей программе. Ноль или единицу. Включено или выключено! Стандарта нет!!!

Если фуз биты задаются двумя числами — старший и младший биты, то выставляются они как в даташите. Где 0 это включено.

Второе, железное, правило работы с FUSE. Запомните это навсегда и не говорите, что я не учил.

ВНАЧАЛЕ ЧИТАЕМ ТЕ ЧТО ЕСТЬ, ПОТОМ ЗАПИСЫВАЕМ ТЕ КОТОРЫЕ НАДО НАМ

Чтение — модификация — запись. ТОЛЬКО так. Почему? Да просто часто бывает как — открыл вкладку FUSE, а программатор попался тупой и сам их не считал. Как результат — у тебя там везде пустые клеточки. Довольный, выставил только те, что тебе надо SKSEL, а потом нажал WRITE. Тут то и наступает, Обычно, кабздец. Т.к. в контроллер записываются не только те, что ты изменишь, а ввобще вся секция. С теми самыми пустыми клеточками. Представь какой трешняк там будет. То то же! А потом бегут жаловаться по комментам и форумам, мол я ничего такого не трогал — оно само. Ага, щаз!

Так что, еще раз — Чтение, Модификация, Запись!

Подсказка:
Как с одного взгляда определить какого типа (прямые или инверсные) fuse биты в незнакомой прошивающей проге?
Дедуктивный метод: Нажмите чтение Fuses и посмотрите на состояние бита SPIEN Этот бит всегда активен, а если он будет сброшен, то программатор контроллер даже определить не сможет. Если SPIEN в 1 — значит фьюзы инверсные, как в PonyProg. Если ноль — значит по нотации Atmel.

Установка Fuse- и Lock-битов (битов конфигурации и блокировки) микроконтроллеров (МК) семейства AVR, особенно для начинающих, является достаточно сложной задачей и не редко может вызывать путаницу при настройке и программировании МК. Если вы какой-то бит пропустили или установили неверно, это может привести к неправильной работе программы или, что еще хуже, к невозможности запрограммировать МК внутрисхемно по последовательному интерфейсу.

Несмотря на то, что в технической документации на каждый МК дается исчерпывающая информация по Fuse- и Lock-битам, новички часто чувствуют себя несколько неуверенно перед выполнением команды записи битов конфигурации и блокировки. В статье мы рассмотрим основные особенности битов конфигурации МК семейства AVR.

Fuse- и Lock-биты

Перед тем как мы приступим к подробному разбору битов конфигурации, нужно уяснить и запомнить один момент:

  • Fuse-бит = 1, означает, что он незапрограммирован (сброшен, неактивен);
  • Fuse-бит = 0, означает, что он запрограммирован (установлен, активен).

Это один из основных источников возникающей путаницы в процессе программирования Fuse- и Lock-битов. Мы привыкли думать, что установить значение какого-либо параметра означает записать 1, верно? С Fuse-битами AVR - наоборот, установка какого-либо бита означает запись 0, и это нужно помнить.

Биты конфигурации расположены в отдельной области энергонезависимой памяти. К примеру, МК имеет четыре конфигурационных байта, которые необходимо запрограммировать для корректного функционирования. Один из этих байтов содержит биты блокировки, оставшиеся три (часто именуемые старший, младший и расширенный) - содержат конфигурационные биты. Этот набор битов устанавливает начальные настройки МК: источник тактового сигнала, область загрузчика, функционирование аппаратного сброса, сторожевого таймера и пр. Сначала мы рассмотрим биты блокировки (Рисунок 1).

В зависимости от типа микроконтроллера AVR количество Lock-битов может быть различным, но два младших бита всегда присутствуют. Биты LB1 и LB2 используются для блокировки доступа к встроенной Flash-памяти. Вы, наверное, знаете, что разработчики каких-либо устройств практически всегда блокируют чтение прошивки МК, чтобы защитить свою интеллектуальную собственность и предотвратить создание дубликатов и подделок. Чтение заблокированного микроконтроллера - это как конфета для аппаратных хакеров, но это отдельная тема. Так, если нужно защитить свою прошивку от копирования, необходимо заблокировать содержимое памяти микроконтроллера, в противном случае оставьте биты без изменения. Другие биты блокировки (BLB01, BLB02, BLB11 и BLB11 ) могут использоваться для блокировки записи/чтения в/из Flash-памяти, как из области приложения, так и из секции загрузчика. Биты блокировки довольно редко программируются (зависит от специфики приложения), мы не будем на них заострять внимание. Даже если вы запрограммируете любой из них - биты блокировки сбрасываются (устанавливаются в 1) во время выполнения команды полного стирания кристалла (Chip Erase).

Больше всего нас интересуют биты конфигурации, с ними вам придется иметь дело очень часто, хотите вы этого или нет. Расположение определенных Fuse-битов в трех байтах конфигурации отличается в зависимости от используемого МК. Для примера, мы рассмотрим ATmega328P, имеющий три байта конфигурации (Рисунок 2).

Рисунок 2. Состав конфигурационных байтов и начальные значения Fuse-битов микроконтроллера ATmega328P.

Посмотрите на состав младшего байта. Вы видите группу из 4 одинаковых битов CKSEL0, CKSEL1, CKSEL2, CKSEL3 . Они используются для выбора типа источника тактовых сигналов для микроконтроллера МК. По-умолчанию (заводские установки) микроконтроллер настроен на работу от внутреннего RC осциллятора 8 МГц. Логически это самый безопасный вариант работы с микроконтроллером. Но, как известно, приборы семейства AVR могут работать от различных источников тактовой частоты:

  • калиброванный внутренний RC осциллятор (по умолчанию 8 МГц);
  • внешний RC осциллятор;
  • внешний керамический или кварцевый резонатор;
  • внешний низкочастотный кварц;
  • внешний источник тактового сигнала.

Для каждого из представленных режимов тактирования имеется диапазон установок Fuse-битов CKSEL0..3 , которые используются для управления частотой тактового генератора и временем выхода микроконтроллера на рабочий режим из режима пониженного энергопотребления. Эти биты тесно связаны с битами SUT0 и SUT1 , фактически управляющими временем запуска микроконтроллера после подачи питания. Задержка запуска необходима для стабилизации генерации керамических резонаторов и кварцев. Точные значения времени выхода микроконтроллера на рабочий режим приводятся в технической документации.

Конфигурационный бит CKOUT разрешает/запрещает вывод тактовой частоты на один из выводов МК; для ATmega328P на вывод PORTB0 (для тактирования других устройств), причем независимо от того, какой используется источник тактирования МК. Если бит запрограммирован, то для пользовательского приложения основная и альтернативные функции порта PB0 недоступны.

Последний бит в младшем байте - CKDIV8 . По умолчанию этот бит установлен, что означает подключение к внутреннему RC осциллятору 8 МГц делителя частоты с коэффициентом 8, поэтому системная тактовая частота МК в этом случае будет равна 1 МГц. Если вам нужна тактовая частота 8 МГц, бит CKDIV8 нужно сбросить.

Теперь акцентируем внимание на старшем конфигурационном байте.

Первый бит - BOOTRST , который по умолчанию сброшен. Если этот бит установить, то после подачи питания на микроконтроллер или после сброса микроконтроллер начнет выполнение программы из загрузочного сектора. Проще говоря, если в приложении требуется выполнение функций загрузчика из Flash-памяти, то этот бит нужно запрограммировать. Если необходимо просто запрограммировать микроконтроллер по внутрисхемному интерфейсу, то можно оставить этот бит нетронутым.

При использовании загрузчика немаловажное значение приобретают биты BOOTSZ0 и BOOTSZ1 . Они задают область Flash-памяти для загрузчика. Если программный код загрузчика вашего приложения имеет маленький объем, то с помощью битов конфигурации можно выделить область Flash-памяти меньшего размера для загрузчика, а остальное оставить для приложения.

Следующий бит EESAVE . Если его запрограммировать (0), то содержимое энергонезависимой памяти данных EEPROM останется нетронутым во время процедуры стирания кристалла (Chip Erase). В большинстве случаев это полезная функция, например, когда в EEPROM хранятся важные данные или калибровочные параметры и необходимо выполнить обновление прошивки, то перед заменой прошивки запрограммируйте бит EESAVE .

После установки бита WDTON сторожевой таймер микроконтроллера включается сразу после подачи питания, и выключить программно его невозможно. В этом случае сторожевой таймер будет постоянно выполнять свою функцию периодического сброса микроконтроллера, если в коде программы не выполнять специальную команду сброса сторожевого таймера. Если бит WDTON не установлен, то включение/отключение сторожевого таймера осуществляется программно.

Бит SPIEN предназначен для отключения последовательного интерфейса программирования микроконтроллера. На самом деле вы не сможете изменить состояние этого бита используя последовательный интерфейс (МК AVR поддерживают еще два режима параллельного программирования), но известны случаи изменения состояния бита SPIEN при некорректной работе или сбое внутрисхемного программатора.

Аналогичная ситуация с битом RSTDSBL - он используется для отключения функции аппаратного сброса, другими словами вывод сброса МК используется как порт ввода/вывода. В некоторых ситуациях (МК с малым числом линий ввода/вывода) это очень удобно, но в целом не рекомендуется. Ошибочная установка бита RSTDSBL может лишить вас возможности программировать микроконтроллер по SPI, т. к. наличие сигнала сброса - обязательное условие включения режима программирования.

Бит DWEN используется для включения специального отладочного интерфейса DebugWire микроконтроллеров AVR. Изменить состояние битов SPIEN, RSTDSBL и DWEN по последовательному интерфейсу невозможно, для этого потребуется параллельный программатор с поддержкой высоковольтного режима программирования или подключение по интерфейсу DebugWire.

Следует отметить еще бит CKOPT в старшем байте конфигурации (в ATmega328P он отсутствует, но есть в других МК AVR), управляющий режимом работы усилителя тактового генератора. Если бит запрограммирован (0), то выходной сигнал тактового генератора имеет размах (амплитуду), равный напряжению питания. Использовать эту опцию можно, когда микроконтроллер будет работать в обстановке с высоким уровнем помех, а также когда планируется подключить еще один микроконтроллер к выводу XTAL2. В других случаях этот режим нужно отключить (CKOPT=1 ), поскольку увеличивается энергопотребление микроконтроллера, а это не приветствуется в устройствах с батарейным питанием.

Последний конфигурационный байт (расширенный). Для микроконтроллера Atmega328P в нем содержатся три бита: BODLEVEL0, BODLEVEL1, BODLEVEL2 . Эти биты предназначены для установки порога срабатывания схемы детектора напряжения питания: когда напряжения питания достигнет установленного уровня, произойдет сброс микроконтроллера.

Калькулятор значений Fuse-битов

Когда вам потребуется запрограммировать новый МК, для установки Fuse-битов вы можете воспользоваться техническим описанием на микроконтроллер. Но есть более удобный и простой способ - калькулятор Fuse-битов - онлайн инструмент, разработанный Марком Хаммерлингом (Рисунок 3). Вы самостоятельно выбираете тип микроконтроллера и включаете/выключаете необходимые опции, а конфигурация Fuse-битов будет обновляться автоматически.

Кроме того, вы можете индивидуально устанавливать Fuse-биты в отдельной форме, значения младшего, старшего и расширенного байта конфигурации также будут обновляться автоматически (Рисунок 4), одновременно генерируются команды для программатора AVRDude.

Если у вас есть мобильный телефон или планшетный ПК с ОС Android, можно воспользоваться бесплатным приложением AVR Fuse Calculator , которое выполняет те же функции и генерирует команды для программатора AVRDude. В базе данных программы 144 МК AVR.

Основные правила для новичков:

  • Никогда не изменяйте состояние битов DWEN, SPIEN и RSTDSBL. Фактически, по последовательному интерфейсу программирования к ним нет доступа;
  • Дважды проверьте биты CKSEL. Неправильная установка типа тактового генератора вызывает множество проблем;
  • Если вы не производите коммерческие продукты, не меняете состояние Lock-битов;
  • Если не уверены в правильности установки Fuse-битов, лучше обратитесь к технической документации или задайте вопрос на форуме специалистам.

Опубліковано 16.07.2012

Фьюзы (Fuses) – это несколько специальных байт, которые можно прошить только , и отвечают они за разные настройки микроконтроллера. У разных микроконтроллеров фьюзы могут отличаться. Поэтому более подробную информацию смотрите в документации. Поскольку это делается в последнюю очередь, я приведу здесь краткое описание фьюзов и перечислю наиболее часто встречающиеся ошибки при работе с фюзами.

Хочу заметить, что установленным считается бит, который сброшен в 0. Для начинающих это часто вносит путаницу, при работе с разными программами для прошивки.
Так как не всегда ясно установленная напротив фьюза птичка это 1 или 0 (в смысле, установлен). Разработчики ПО имели ввиду, если стоит птичка, значит, бит считается установленным (т.е. =0).

Семейство
ATtiny
Семейство
ATmega
2313 25 /
45/
85
13 26 261 /
461/
861
8 16 48 /
88/
168
128 169 329 8515 8535

RESERVED
M103С + S8515С S8535С
OCDEN + + + +
JTAGEN + + + +

SELFPRGEN
+ + + + +
DWEN + + + + + +

EESAVE
+ + + + + + + + + + + + +

SPIEN
+ + + + + + + + + + + + +

WDTON
+ + + + + + + + + + +

BODLEVEL2
+ + + + +

BODLEVEL1
+ + + + + + +

BODLEVEL0
+ + + BOD
LEVEL
+ BOD
LEVEL
BOD
LEVEL
+ BOD
LEVEL
+ + BOD
LEVEL
BOD
LEVEL

BODEN
+ + + + + +
RSTDISBL + + + + + + + +

CKDIV8
+ + + + + + +

CKOUT
+ + + + + +
SUT1 + + + + + + + + + + + + +
SUT0 + + + + + + + + + + + + +
CKOPT + + + + + +
CKSEL3 + + + + + + + + + + + +
CKSEL2 + + + + + + + + + + + +
CKSEL1 + + + + + + + + + + + + +
CKSEL0 + + + + + + + + + + + + +

PLLCK
+
BOOTRST + + + + + + + +

BOOTSZ1
+ + + + + + + +

BOOTSZ0
+ + + + + + + +

В таблице fuse -биты популярных AVR . Слева названия fuse -битов по даташиту, в первых двух строках перечислены семейства и типы конкретных МК, а на пересечении строк и столбцов стоит знак плюс , если данный fuse -бит имеется в данном МК, или указано название , отличное от стандартного. Если какой-то бит отсутствует - в соответствующей клетке ничего нет.Назначение каждого фьюза AVR fuse бита:RESERVED - этот бит зарезервирован для каких-то неизвестных простым смертным целей фирмой Atmel . Ни при каких условиях не рекомендуется менять его состояние (т. е. надо оставлять его таким, как он установлен при изготовлении МК). В этой строке
встречаются биты с другими названиями, как правило, это биты включения режима совместимости с устаревшими типами МК, на смену которым выпущены новые. Обычно в конце названия такого fuse -бита имеется символ С - от COMPATIBLE (совместимый).

OCDEN - fuse разрешает работу схемы внутреннего отладчика (O n C hip D ebug EN able). Не оставляйте установленным этот бит в коммерческих продуктах! Иначе вашу программу можно будет считать из памяти МК.

JTAGEN - fuse бит разрешает работу интерфейса программирования-отладки JTAG . По сравнению с SPI -интерфейсом, JTAG обладает расширенными возможностями. Не рекомендуется без необходимости оставлять этот бит установленным, т. к. в этом случае потребляемый МК ток возрастает.

SELFPRGEN - бит, разрешающей программе МК производить запись в память программ, т. е. производить самопрограммирование.

DWEN - fuse бит, разрешающий работу DebugWire – это интерфейс отладки по одному проводу. Не рекомендуется оставлять его установленным в коммерческих изделиях.

EESAVE - fuse бит, после установки которого при стирании памяти МК содержимое EEPROM данных будет сохраняться нетронутым, т. е. не будет стерто.

SPIEN - fuse бит, разрешающий работу интерфейса внутрисхемного программирования МК по SPI . Этот бит может быть легко переустановлен при помощи параллельного программатора (или JTAG , если таковой разрешен и имеется в МК). Все МК выпускаются с установленным битом SPIEN , снять его по интерфейсу SPI невозможно .

WDTON - fuse бит, после установки которого сторожевой таймер WDT включается сразу после подачи питания и не может быть отключен программно. Если бит не установлен, то включением и отключением WDT можно управлять программно.

Группа fuse битов BODLEVEL . Может быть либо один такой бит, либо несколько, тогда они нумеруются, начиная с нуля. Значение этих fuse битов определяет порог срабатывания схемы BOD - детектора уровня питающего напряжения, при снижении напряжения питания ниже этого уровня произойдет “сброс” МК.

BODEN - fuse бит, включающий схему аппаратного детектора недопустимого уровня питающего напряжения, т.е. схему BOD .

RSTDISBL - fuse бит, отключающий сигнал внешнего сброса от вывода микроконтроллера и подключающий к нему схему порта ввода-вывода. Этот бит имеется только в тех МК, у которых вывод аппаратного сброса RESET совмещен с одинм из портов ввода-вывода. Ошибочная установка этого fuse бита может отключить RESET и вы не сможете больше прошивать по ISP. Не устанавливайте этот бит, если намерены продолжать работать с МК при помощи последовательных программаторов. “Оживить” МК с установленным RSTDISBL можно только параллельным программатором и не для всех МК.

CKDIV8 - fuse бит, включающий предварительное деление частоты кварцевого (или иного имеющегося) тактового генератора на 8. То есть при включенном этом бите и применении кварцевого резонатора на 8 МГц реальная тактовая частота МК составит1 МГц.

CKOUT - fuse бит, разрешающий вывод тактовой частоты на один из выводов МК (для тактирования других устройств).

SUT1 и SUT0 - fuse биты, управляющие режимом запуска тактовых генераторов МК. Связаны с нижеописываемыми битами, определяющими тип и частоту тактового генератора, причем связь весьма хитрая и запутанная. При ошибочной их установке возможны ситуации неустойчивого запуска генератора или неоднократного сброса МКв процессе подачи на него питания.

CKOPT - бит, определяющий режим работы встроенного генератора тактовой частоты для работы с кварцевыми резонаторами. Реально изменяет коэффициент усиления встроенного инвертора в схеме генератора и, следовательно, – выходное напряжение на ножке XTAL2 . Ошибочная установка может приводить к неустойчивому запуску кварцевого генератора, вплоть до возбуждения его не на той гармонике, что надо (из-за этого бита кварц запускался или только при питании МК напряжением не выше 3,6В, или только после прикосновения к выводу XTAL1 пинцетом )

Группа битов CKSEL0 CKSEL3 - fuse биты, комбинация которых определяет тип и частоту работающего тактового генератора. Всего возможно до 16 комбинаций, однако не все определены для всех типов МК. Ошибочная установка комбинации этих битов может сделать МК «мертвым» - он не будет работать в схеме без подачи тактового сигнала на ножку XTAL1 .

PLLCK - fuse бит, разрешающий использование встроенного синтезатора частоты для тактированияядра МК.

BOOTRST - fuse бит, определяющий адрес, с которого будет начато исполнение программы после сброса - если бит установлен, то начало программы будет не с адреса 0000h (как обычно), а с адреса области загрузчика (Boot Loader ).

Группа fuse битов BOOTSZ - два fuse бита, определяющие размер области памяти программ, выделяемой для загрузчика (Boot Loader ). Комбинация этих битов, в частности, определяет точку начала исполнения программы после сброса, если установлен бит BOOTRST .

Наиболее частые ошибки при настройке фюзов:

1. Установка фюза RSTDISBL . Ошибочная установка этого fuse бита отключает RESET , и Вы не сможете больше прошивать по ISP . Для этого потребуется последовательный программатор или что-то .

2. Неправильная установка CKSEL0 , CKSEL1 , CKSEL2 , CKSEL3 . Эти фьюзы определяют источник тактирования микроконтроллера. Если Вы случайно выбрали не ту частоту внутреннего RC генератора, это не смертельно. Программирование через ISP будет возможным, и вы сможете исправить ситуацию. А если случайно установить тактирование от внешнего источника, RC цепочки или кварцевого резонатора, а у Вас таких в схеме нет, то программирование по ISP тоже станет невозможным. По сути, микроконтроллер будет ожидать тактирования от несуществующей схемы. Как выйти из этого положения? Очень просто – дать микроконтроллеру источник тактирования и исправить фьюзы. Чаще всего устанавливают CKSEL все нули – тактирование от внешнего генератора. В этом случае можно собрать схему, генерирующую меандр (частота особой роли не играет, главное, чтобы она лежала пределах возможности микроконтроллера) и подать на ногу XTAL1 . После чего микроконтроллер можно будет прошить через ISP . Первое, что надо сделать, – сбросить фьюзы к заводским настройкам. Если CKSEL все установлены в 1 – тактирование от внешнего кварца. Навесьте кварц после чего микроконтроллер снова будет доступен через ISP .